当前位置:首页 > (优辅资源)山西省太原市高三第三次模拟考试数学(理)试题Word版含答案
全优好卷
所以,f?x?的增区间为??2a,??1??1??2a?,减区间为??2a,???, a??a?所以M?a??f??1??2a??2a2?1?lna, ?a?22不妨设a1?a2,∴2a1?1?lna1?2a2?1?lna2,
∴2a2?a1?lna2?lna1?ln?22?a2, a1a22?aa?aa1a2?a12a?ln2,∴4a1a2?2?1??2ln2,∴4a1a2?∴2a1a2,
a1?a2a1?a1a2a1?a1a2?????a1a2?2ln112?1?设h?t??t??2lnt?t?1?,则h??t??1?2???1???0,
ttt?t?1t??2lnt?0, ht1,??ht?h1?0所以,??在??上单调递增,????,则t2a2a2a1a2a1a2??2ln?0,?1,所以4a1a2?1; ?1因,故aaa1a2a1a12?1a1a22ln??1??2a?单调递增,又x??2a时,f?x????, a?(2)由(1)可知,f?x?在区间??2a,易知,f??1??2a??M?a??2a2?1?lna在?2,???递增,M?a??M?2??7?ln2?0, a??∴?2a?x0?11?2a,且?2a?x?x0时,f?x??0;x0?x??2a时,f?x??0, aa 全优好卷
全优好卷
??a?1?x?ln?x?2a?,??2a?x?x0?1?当?2a?x??2a时,g?x???1??,
lnx?2a?a?1x,x?x??2aa?????0??a???于是?2a?x?x0时,g??x???a?1??11??a?1??,
x?2ax0?2a所以,若证明x0?11?0, ?2a,则证明?a?1??x0?2aa?1记H?a??f?1?1??2a??2a2??1?ln?a?1?,
a?1?a?1?则H??a??4a?1?a?1?2?111,∵a?2,∴H??a??8???0,
93a?1∴H?a?在?2,???内单调递增,∴H?a??H?2??22?ln2?0, 311?2a??2a, ∵a?1a??11????2a????2a,?2a?内单调递增, a?1a???∴f?x?在??2a,?∴x0???2a,??1??2a?,于是?2a?x?x0时, a?1?22.解:(1)圆C的参数方程为??x?3cos?,(?为参数),
?y?3?3sin?2∴圆C的普通方程为x??y?3??9;
2(2)化圆C的普通方程为极坐标方程??6sin?,
全优好卷
全优好卷
???6sin?5??设P??1,?1?,则由?, ??解得?1?3,?1?6???6?????2?sin?????43?5??6??设Q??2,?2?,则由?,解得?2?4,?2?,
65?????6?∴PQ??2??1?1. 23.解:(1)∵函数f?x??x?2?x?1?x?2??x?1??3, 故函数f?x??x?2?x?1的最小值为3,
此时?2?x?1;
(2)当不等式f?x??ax?1?0的解集为R,函数f?x???ax?1恒成立, 即f?x?的图象恒位于直线y??ax?1的上方,
??2x?1,x??2?函数f?x??x?2?x?1??3,?2?x?1,
?2x?1,x?1?而函数y??ax?1表示过点?0,1?,斜率为?a的一条直线, 如图所示:当直线y??ax?1过点A?1,3?时,3??a?1,
∴a??2,
当直线y??ax?1过点B??2,3?时,3?2a?1,∴a?1, 数形结合可得a的取值范围为??2,1?. 全优好卷
全优好卷
全优好卷
共分享92篇相关文档