当前位置:首页 > 统计学部分习题答案
第2章 统计数据的描述
答案
2.1 (1) 属于顺序数据。
(2) 频数分布表如下:
服务质量等级评价的频数分布
服务质量等级
A B C D E 合计
家庭数(频率)
14 21 32 18 15 100
频率% 14 21 32 18 15 100
(3)条形图(略)
2.2 (1)频数分布表如下:
40个企业按产品销售收入分组表 按销售收入分组 企业数 频率 向上累积 (万元) (个) (%) 企业数 频率 100以下 100~110 110~120 120~130 130~140 140以上 合计 5 9 12 7 4 3 40 12.5 22.5 30.0 17.5 10.0 7.5 100.0 5 14 26 33 37 40 — 12.5 35.0 65.0 82.5 92.5 100.0 — 向下累积 企业数 40 35 26 14 7 3 — 频率 100.0 87.5 65.0 35.0 17.5 7.5 — (2) 某管理局下属40个企分组表
按销售收入分组(万元) 企业数(个)
先进企业 良好企业 一般企业 落后企业 合计
11 11 9 9 40
频率(%) 27.5 27.5 22.5 22.5 100.0
2.3 频数分布表如下:
某百货公司日商品销售额分组表
按销售额分组(万元)
25~30 30~35 35~40 40~45 45~50 合计
直方图(略)。
频数(天)
4 6 15 9 6 40
频率(%) 10.0 15.0 37.5 22.5 15.0 100.0
2.4 (1)排序略。
(2)频数分布表如下:
100只灯泡使用寿命非频数分布
按使用寿命分组(小时) 灯泡个数(只) 频率(%)
650~660 660~670 670~680 680~690 690~700 700~710 710~720 720~730 730~740 740~750 合计
直方图(略)。
(3)茎叶图如下: 65 1 8 66 1 4 5 6 8 67 1 3 4 6 7 9 68 1 1 2 3 3 3 4 5 5 5 8 8 9 9 69 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 9 70 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 9 71 0 0 2 2 3 3 5 6 7 7 8 8 9 72 0 1 2 2 5 6 7 8 9 9 73 3 5 6 74 1 4 7 2.5 (1)属于数值型数据。
(2)分组结果如下:
分组 -25~-20 -20~-15 -15~-10 -10~-5 -5~0 0~5 5~10 合计
天数(天)
6 8 10 13 12 4 7 60 2 5 6 14 26 18 13 10 3 3 100
2 5 6 14 26 18 13 10 3 3 100
(3)直方图(略)。 2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.7 (1)茎叶图如下: A班 数据个数 树 叶 树茎 B班 树叶 数据个数 0 1 2 11 23 7 6 0 4 97 97665332110 98877766555554443332100 6655200 632220 3 4 5 6 7 8 9 10 59 0448 122456677789 011234688 00113449 123345 011456 000 2 4 12 9 8 6 6 3 (2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,
且平均成绩较A班低。
2.8 箱线图如下:(特征请读者自己分析) 各城市相对湿度箱线图958575655545Min-Max3525%-75% 2.9 (1)x=274.1(万元);Me =272.5 ;QL=260.25;QU =291.25。
(2)s?21.17(万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
2.11 x=426.67(万元);s?116.48(万元)。 2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标
准差的大小基本上不受样本大小的影响。
(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。 2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。 (2) 男生:x=27.27(磅),s?2.27(磅); 女生:x=22.73(磅),s?2.27(磅); (3)68%;
(4)95%。
2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。 (2)成年组身高的离散系数:
北京长春南京郑州武汉广州成都昆明兰州西安Median valuevs?4.2?0.024172.1;
幼儿组身高的离散系数:
由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。 2.15 表给出了一些主要描述统计量,请读者自己分析。 方法A 平均 中位数 众数 标准偏差 极差 最小值 最大值 165.6 165 164 2.13 8 162 170 方法B 平均 中位数 众数 标准偏差 极差 最小值 最大值 128.73 129 128 1.75 7 125 132 方法C 平均 中位数 众数 标准偏差 极差 最小值 最大值 125.53 126 126 2.77 12 116 128 vs?2.3?0.03271.3;
2.16 (1)方差或标准差;(2)商业类股票;(3)(略)。
2.17 (略)。
第3章 概率与概率分布
答案
3.1设A=女性,B=工程师,AB=女工程师,A+B=女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6
(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/2
3.2求这种零件的次品率,等于计算“任取一个零件为次品”(记为A)的概率P(A)。 考虑逆事件A?“任取一个零件为正品”,表示通过三道工序都合格。据题意,有:
P(A)?(1?0.2)(1?0.1)(1?0.1)?0.648
于是 P(A)?1?P(A)?1?0.648?0.352
3.3设A表示“合格”,B表示“优秀”。由于B=AB,于是
P(B)=P(A)P(B|A)=0.8×0.15=0.12
3.4 设A=第1发命中。B=命中碟靶。求命中概率是一个全概率的计算问题。再利用对立事件的概率即可求得脱靶的概率。
P(B)=P(A)P(B|A)?P(A)P(B|A) =0.8×1+0.2×0.5=0.9 脱靶的概率=1-0.9=0.1
或(解法二):P(脱靶)=P(第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1
共分享92篇相关文档