当前位置:首页 > 第二十三章 旋 转 学习·探究·诊断
21.已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、
BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
测试2 中心对称
学习要求
1.理解两个图形关于某一点中心对称的概念及其性质,能作一个图形关于某一个点的中心对称图形.
2.理解中心对称图形.
3.能熟练掌握关于原点对称的点的坐标.
4.能综合运用平移、轴对称、旋转等变换解决图形变换问题.
课堂学习检测
一、填空题
1.把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.
2.关于中心对称的两个图形的性质是:
(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.
(2)关于中心对称的两个图形是______.
3.把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.
4.线段不仅是轴对称图形,而且是______图形,它的对称中心是______. 5.平行四边形是______图形,它的对称中心是____________.
6.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.
7.若线段AB、CD关于点P成中心对称,则线段AB、CD的关系是______.
8.如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
8题图
9.若O点是□ABCD对角线AC、BD的交点,过O点作直线l交AD于E,交BC于F.则线段OF与OE的关系是______,梯形ABFE与梯形CDEF是______图形. 二、选择题
10.下列图形中,不是中心对称图形的是( ). ..A.圆 B.菱形 C.矩形 D.等边三角形 11.以下四个图形中,既是轴对称图形又是中心对称图形的有( ).
A.4个 B.3个 C.2个 12.下列图形中,是中心对称图形的有( ).
D.1个
A.1个 B.2个 C.3个
13.下列图形中,是轴对称图形而不是中心对称图形的是( ).
D.4个
综合、运用、诊断
14.如图,已知四边形ABCD及点O.
求作:四边形A′B′C′D′,使得四边形A′B′C′D′与四边形ABCD关于O点中心对称.
15.已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并
简要说明理由.
16.如下图,图(1)和图(2)是中心对称图形,仿照(1)和(2),完成(3),(4),(5),(6)的中心对
称图形.
17.如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作
图痕迹.
18.已知:三点A(-1,1),B(-3,2),C(-4,-1).
(1)作出与△ABC关于原点对称的△A1B1C1,并写出各顶点的坐标;
(2)作出与△ABC关于P(1,-2)点对称的△A2B2C2,并写出各顶点的坐标.
拓广、探究、思考
19.(1)到目前为止,已研究的图形变换有哪几种?这些变换的共同性质有哪些?
(2)如图,O是正六边形ABCDEF的中心,图中可由△OBC旋转得到的三角形有a个,可由△OBC平移得到的三角形有b个,可由△OBC轴对称得到的三角形有c个,试
+-
求(a+b+c)abc的值.
20.已知:直线l的解析式为y=2x+3,若先作直线l关于原点的对称直线l1,再作直线l1
关于y轴的对称直线l2,最后将直线l2沿y轴向上平移4个单位长度得到直线l3,试求l3的解析式.
21.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二
行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?
科学家名言
对称性原理在探索自然奥秘中所起的作用,无论怎么强调也不会过分的。因为物理学家发现,一个对称规律打破后,会出现更高一级的对称。
——杨振宁
测试3 旋转的综合训练
一、填空题
1.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M按逆时针方向旋转22°,则三角板的斜边与射线OA的夹角?为______°.
共分享92篇相关文档