当前位置:首页 > 冲刺20102009年中考数学压轴题汇编含详细解析(1)doc - 图文
冲刺2010 ——2009年中考数学压轴题汇编(含解题过程)
1、(2009年北京)25.如图,在平面直角坐标系xOy中,?ABC三个机战的坐标分别为
A??6,0?,B?6,0?,C0,43,延长AC到点D,使CD=
??12AC,过点D作DE∥AB交
BC的延长线于点E. (1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y?kx?b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y?kx?b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)
2、(2009年重庆市)26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
65,那么
EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
y
0),D(2,2), 26.解:(1)由已知,得C(3,??ADE?90°??CDB??BCD,
A E D B O 26题图
C x
?AE?AD?tan?ADE?2?tan?BCD?2?12?1.
1). ·?E(0,···················································································································· (1分)
设过点E、D、C的抛物线的解析式为y?ax?bx?c(a?0). 将点E的坐标代入,得c?1.
将c?1和点D、C的坐标分别代入,得
?4a?2b?1?2, ············································································································ (2分) ?9a?3b?1?0.?25?a????6解这个方程组,得?
?b?13?6?故抛物线的解析式为y??56x?2136x?1. ································································ (3分)
(2)EF?2GO成立. ································································································ (4分)
?点M在该抛物线上,且它的横坐标为?点M的纵坐标为
65,
125. ······························································································· (5分)
F A E x
y 设DM的解析式为y?kx?b1(k?0), 将点D、M的坐标分别代入,得
1?2k?b1?2,?k??,?? 解得2 ?6?12.?k?b1??b?3.5?1?5?DM的解析式为y??M D B O G K C 12x?3. ··············································································· (6分)
3),EF?2. ·?F(0,·································································································· (7分)
过点D作DK⊥OC于点K,
则DA?DK.
??ADK??FDG?90°, ??FDA??GDK.
又??FAD??GKD?90°, ?△DAF≌△DKG. ?KG?AF?1. ?GO?1. ···················································································································· (8分) ?EF?2GO.
0),C(3,0),则设P(1,2). (3)?点P在AB上,G(1,?PG2?(t?1)?2,PC2222?(3?t)?2,GC?2.
22222①若PG?PC,则(t?1)?2?(3?t)?2,
2),此时点Q与点P重合. 解得t?2.?P(2,2). ·?Q(2,··················································································································· (9分)
②若PG?GC,则(t?1)?2?2,
2),此时GP⊥x轴. 解得 t?1,?P(1,GP与该抛物线在第一象限内的交点Q的横坐标为1, ?点Q的纵坐标为
2?273.
?7??Q?1,?. ················································································································ (10分)
?3?
③若PC?GC,则(3?t)?2?2,
2),此时PC?GC?2,△PCG是等腰直角三角形. 解得t?3,?P(3,222过点Q作QH⊥x轴于点H,
y 则QH?GH,设QH?h,
?Q(h?1,h).
Q A E P (Q) (P) D Q B (P) ??56(h?1)?752136(h?1)?1?h.
解得h1?,h2??2(舍去).
O G H C x
?127??Q?,?. ··············································· (12分)
?55?综上所述,存在三个满足条件的点Q,
??7?3??127?,?. ?55?2)或Q?1,?或Q?即Q(2,
3、(2009年重庆綦江县)26.(11分)如图,已知抛物线y?a(x?1)2?33(a?0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止M y PQ的面积最小?运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCD C 并求出最小值及此时PQ的长.
P
2A O Q B x 0), *26.解:(1)?抛物线y?a(x?1)?33(a?0)经过点A(?2,
共分享92篇相关文档