ǰλãҳ > 高考数学大一轮复习第6讲函数的奇偶性与周期性学案理新人教A?- 百度文库
6 ż
˵ 1.Ͼ庯,˽⺯żԵĺ. 2.úͼоż.
3.˽⺯ԡСڵĺ,жϡӦü.
ǰ˫̡ ֪ʶ۽
1.f(-x)=f(x) f(-x)=-f(x) y ԭ 2.f(x+T)=f(x) С С Ե
1.2 [] f(x)=x-1f(x)=x+cos xΪż. 2. [] żͼĶԳԿɵ. 3.1- [] f(-2)=-f(2)=-( -1)=1- .
4.1 [] Ϊf(x+3)=f(x),f(x)3Ϊڵں,
2
2
f(2019)=f(6733)=f(0)=log4(02+4)=1.
5. []
-
-1 = =-f(x),f(x)溯. 6.x=a (b,0) [] Ϊy=f(x+a)ż,ͼyԳ,y=f(x+a)ͼ(a<0)(a>0)ƽ|a|λ,õy=f(x)ͼ,y=f(x+a)ͼĶԳƽֱx=a,y=f(x)ͼֱx=aԳ.ͬ,y=g(x)ͼڵ(b,0)ĶԳ. 7.2 [] f(x)=-f ,f(x+3)=f =-f =f(x),f(2018)=f(3672+2)=f(2)=2. - 8. [] x<0,-x>0,f(x)=-f(-x)=-[(-x)-3]=x+3(x<0).溯 ֪f(0)=0, 9ҳ 16ҳ - f(x)= ÿ̽ 1 [˼·㲦] (1)f(x)=f(-x)f(-x)=-f(x)ʱ,a,bȡֵ;(2)ݺżԵĶж. (1)D (2)D [] (1)f(x)ĶΪ{x|x0}.ɵf(-x)=- +b= - - - - - f(x)= +b= , - - .f(x)=f(-x),b=b-2,ȥ;f(-x)=-f(x),b-2=-b, b=1,ʱΪ溯;b1,Ϊż.Ժf(x)żbй,a. (2)ڢ,Ϊ(-1,1],Ժż;ڢ,ΪR, f(-x)=log3( -x)=log3 =-log3( +x)=-f(x),ԺΪ溯;ڢ, x>0ʱ,-x<0,f(-x)=(-x)2-1=-(-x2+1)=-f(x),ͬx<0ʱ,-x>0,f(-x)=-x2+1=-(x2-1)=-f(x),ԺΪ溯;ڢ,Ϊ R,f(-x)=(-x)+cos(-x)=f(x),Ϊż.ѡD. 2 [˼·㲦] (1)۲캯ṹ,һ溯һĺ͵ʽ,溯ֵСֵĺΪ0;(2)溯Ķ0,f(0)=0,m,ٸ溯Ķֵ. (1)C (2)-7 [] (1)x-1=t,f(t)= - 2 =3- ,t[-4,4], y=f(t)-3溯, f(t)min-3+f(t)max-3=0,f(t)min+f(t)max=6, ຯf(x)[-3,5]ϵֵСֵ֮Ϊ6, p+q=6,ѡC. (2)f(x)ΪRϵ溯,f(0)=0,2+m=0,m=-1,x0ʱ,f(x)=2-1, f(-3)=-f(3)=-(2-1)=-7. 3 [˼·㲦] (1)ɺy=f(x+2)Ϊż֪f(x)ͼֱx=2Գ,ٽϵԱȽϴС;(2)ݺͼƽƹϵõg(x)ĵ,żĵԽⲻʽɵõ. 3 0 x10ҳ 16ҳ (1)D (2)(0,2) [] (1)y=f(x+2)Ϊż,y=f(x+2)ͼƽ2λȵõy=f(x)ͼ,y=f(x)ͼֱx=2Գ,f(x)(-,2)ϵݼ,[2,+)ϵ,f(0)>f(1),f(0)>f(2),f(1)>f(2),f(1)>f(3).ѡD. (2)f(x)[1,+)Ϊ, f(x)ͼƽ1λȵõf(x+1)ͼ,f(x+1)[0,+)Ϊ, g(x)[0,+)Ϊ, g(2)=f(2+1)=f(3)=0. ʽg(2-2x)<0ȼΪg(2-2x) (x)=f(x+1)Ϊż, 2-2x|<2,0 ʽĽ⼯Ϊ(0,2). Ӧ 1.C [] A,f(-x)=(-x)sin(-x)=-xsin x,溯; B,Ƿż; C,f(-x)= - - 2 2 = ,ż; D,Ƿż.ѡC. 2.C [] f(x)=a+a,f(-x)=a+a. =1ʱ,f(x)=f(-x),f(x)Ϊż; =-1ʱ,f(x)=-f(-x),f(x)Ϊ溯; ˡ1Ҧˡ-1ʱ,f(x)Ȳ溯ֲż. ѡC. 3.D [] f(x+2)ͼf(x)ͼƽ2λȺõ,f(x+2)ͼֱx=-2Գ,f(x)ͼyԳ,f(x)Ϊż,f(x-2)1Ϊf(x-2)f(-2)=f(2),ֺf(x)(0,+)ϵ,|x-2|2,-2x-22,0x4. 4.-x+6 [] x>0ʱ,-x<0,f(-x)=(-x)-6,ߺf(x)ǶRϵ溯,-f(x)=f(-x)=x-6,f(x)=-x+6,x>0. 2 2 2 2 x-x-xx11ҳ 16ҳ - 5.-1 [] żĶõkx+log3(1+9)=-kx+log3(1+9),2kx=log3 =-2x,(2k+2)x=0,k=-1. 4 [˼·㲦] (1)֪f(x)Ϊ2,Խֵת֪;(2)ɵóΪ2,f(-1)=f(1)a, x-xf(2017)+f(2018)ֵ. (1)C (2)C [] (1)f(x+2)=f(x)֪f(x)Ϊ2, f =f =f ,ֵx(0,)ʱ,f(x)=2sin ,f =2sin =1,ѡC. (2)f(x+1)=f(x-1)֪f(x)Ϊ2ĺ,f(-1)=f(1),ʽ, -a+2=(a-2)e,a=2,Ӷf(x)= ѡC. - f(2017)+f(2018)=f(1)+f(0)=0+2=2, - ʽ 1 [] ߶Rϵĺf(x)f(x+2)=, f(x+4)= =f(x),ຯf(x)Ϊ4. x[0,2)ʱ,f(x)=x+e, x f(2018)=f(5044+2)=f(2)= = =1. 5 [˼·㲦] (1)-1f(x-2)1תΪf(1)f(x-2)f(-1),úݼתΪ治ʽ;(2)f(x)Ϊżm=0,Ӷ֪f(x)[0,+)ϵݼ,ȻȽԱֵ,ٸf(x)ĵԼɱȽϳa,b,cĴС. (1)D (2)C [] (1)Ϊf(x)Ϊ溯,f(-1)=1,ʽ-1f(x-2)1,f(1)f(x-2)f(-1),Ϊf(x)ݼ,-1x-21,1x3,xȡֵΧΪ[1,3]. (2)f(x)Ϊż,f(-x)=f(x), - - -1= 2 - -1, -x-m|=|x-m|, (-x-m)=(x-m),mx=0,m=0,f(x)= -1,f(x)[0,+)ϵݼ. 2 a=f(log0.52)=f(|log0.52|)=f(log22)=f(1),b=f(log21.5),c=f(0), 0 12ҳ 16ҳ
92ƪĵ