当前位置:首页 > 2018年高考真题 - 数学(浙江卷)
∴AB1?B1C1,①
H. 过点B1作A1A的垂线段交A1A于点
则B1H?AB?2,A1H?2,∴A1B1?22. 222在?A1B1A中,AA?AB?AB1111,
∴AB1?A1B1,②
综合①②,∵A1B1?B1C1?B1,A1B1?平面A1B1C1,B1C1?平面A1B1C1, ∴AB1?平面A1B1C1.
(2)过点B作AB的垂线段交AC于点I,以B为原点,以AB所在直线为x轴,以
BI所在直线为y轴,以B1B所在直线为z轴,建立空间直角坐标系B?xyz.
则B(0,0,0),A(?2,0,0),B1(0,0,2),C1(1,3,1),
?设平面ABB1的一个法向量n?(a,b,c),
????????2a?0?n?AB?0则??????,令b?1,则n?(0,1,0), ????n?BB1?0?2c?0???????????又∵AC1?(3,3,1),cos?n,AC1??339. ?1?1313由图形可知,直线AC1与平面ABB1所成角为锐角,设AC1与平面ABB1夹角为?. ∴sin??20.答案: (1)q?2; (2)bn?15?解答:
(1)由题可得a3?a4?a5?28,2(a4?2)?a3?a5,联立两式可得a4?8. 所以a3?a4?a5?8(?1?q)?28,可得q?2(另一根
39. 134n?3. n?221q1?1,舍去). 2(2)由题可得n?2时,(bn?1?bn)an?2n2?n?[2(n?1)2?(n?1)]?4n?1, 当n?1时,(b2?b1)a1?2?1?3也满足上式,所以(bn?1?bn)an?4n?1,n?N, 而由(1)可得an?8?2n?4?2n?1,所以bn?1?bn?所以bn?b1?(b2?b1)?(b3?b2)???(bn?bn?1)?错位相减得bn?b1?14?所以bn?15?21.答案: (1)略; (2)[62,解答:
?4n?14n?1?n?1, an237114n?5?????, 2021222n?24n?3, 2n?24n?3. n?221510]. 4
2y12y2(1)设P(x0,y0),A(,y1),B(,y2),
44x0y12y0?y1则PA中点为(?,),由AP中点在抛物线上,可得
282y0?y12x0y12()?4(?),
22822化简得y1?2y0y1?8x0?y0?0,显然y2?y1, 22且对y2也有y2?2y0y2?8x0?y0?0,
2所以y1,y2是二次方程y2?2y0y?8x0?y0?0的两不等实根,
y1?y2?y0?yP,即PM垂直于x轴. 211(2)S?(xM?xP)(|y1?yM|?|yM?y2|)?(xM?x0)|y1?y2|,
22所以y1?y2?2y0,yM?2由(1)可得y1?y2?2y0,y1y2?8x0?y0, 22??(2y0)2?4(8x0?y0)?8(y0?4x0)?0(y1?y2),
y2?1(x?0)上, 此时P(x0,y0)在半椭圆x?42∴??8(y02?4x0)?8[4(1?x02)?4x0]?32(1?x0?x02), ∵?1?x0?0,∴??0, ∴|y1?y2|??22?32(1?x0?x0)?42(1?x0?x0), |a|22224y0?2(8x0?y0)6(4?4x0)y12?y2(y1?y2)2?2y1y2|xM?xP|??x0??x0??x0??3x08888
2?3(1?x0?x0),
所以S?122(xM?x0)|y1?y2|?62(1?x0?x0)1?x0?x0?62t3, 22t?1?x0?x0?[1,51510],所以S?62t3?[62,], 24
即?PAB的面积的取值范围是[62,22.答案: (1)略; (2)略. 解答: (1)f?(x)?两根,
1510]. 4111?,不妨设f?(x1)?f?(x2)?t,即x1,x2是方程??t的2xx2xx1xx1,x2是方程tx2??1?0的根,
21111所以???4t?0,得0?t?,且x1?x2?,x1?x2?,
4162tt111f(x1)?f(x2)?(x1?x2)?lnx1x2??ln2??2lnt,
2tt2t1214t?11?2lnt,g?(t)??2??0(0,)上单调递减. g(t)令g(t)?,∴在2tt2t2t2161所以g(t)?g()?8?8ln2,即f(x1)?f(x2)?8?8ln2.
16即(2)设h(x)?(kx?a)?f(x)?kx?x?lnx?a,
则当x充分小时h(x)?0,充分大时h(x)?0,所以h(x)至少有一个零点, 则h?(x)?111112??k?k??(?), x2x16x4①k?1,则h?(x)?0,h(x)递增,h(x)有唯一零点, 1611121,则令h?(x)?(?)?k??0,得h(x)有两个极值点1616x4②0?k?x1,x2(x1?x2),
∴11?,∴0?x1?16. x14可知h(x)在(0,x1)递增,(x1,x2)递减,(x2,??)递增,
∴
h(x1)?kx1?x1?lnx1?a?(x11?)x1?x1?lnx1?a??1?1?lnx1?a,
22x1x1又h?(x1)??114?x1, ??4x14x1x1∴h(x1)在(0,16)上单调递增,
∴h(x1)?h(16)?ln16?3?a?ln16?3?3?4ln2?0, ∴h(x)有唯一零点,
综上可知,k?0时,y?kx?a与y?f(x)有唯一公共点.
共分享92篇相关文档