当前位置:首页 > 基于matlab的人脸识别系统设计与仿真(含源文件) - 图文
互联网应用 视频信息价值高多人参与 存在虚假 银行/储蓄安全 监控效果好 图像分割不可控 图像质量较差 人群监测 图像质量高 可利用摄像图像 图像分割自由 图像质量低、实时性
1.3 本文研究的问题
本文介绍了人脸图像识别中所应用MATLAB对图像进行预处理,应用该工具箱对图像进行经典图像处理,通过实例来应用matlab图像处理功能,对某一特定的人脸图像处理,进而应用到人脸识别系统。本文在总结分析人脸识别系统中几种常用的图像预处理方法基础上,利用MATLAB实现了一个集多种预处理方法于一体的通用的人脸图像预处理仿真系统,将该系统作为图像预处理模块可嵌入在人脸识别系统中,并利用灰度图像的直方图比对来实现人脸图像的识别判定。
其中涉及到图像的选取,脸部定位,特征提取,图像处理和识别几个过程。
1.4 识别系统构成
人类似乎具有“与生俱来”的人脸识别能力,赋予计算机同样的能力是人类的梦想之一,这就是所谓的“人脸识别”系统。假设我们把照相机、摄像头、扫描仪等看作计算机的“眼睛”,数字图像可以看作计算机观察到的“影像”,那么AFR赋予计算机根据其所“看到”的人脸图片来判断人物身份的能力。
4
广义的讲,自动人脸识别系统具有如图1.1所示的一般框架并完成相应功能的任务。
人脸图像获取人脸检测特征提取人脸识别 图1.1 人脸识别系统一般框架 (1)人脸图像的获取
一般来说,图像的获取都是通过摄像头摄取,但摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。
(2)人脸的检测
人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置、人脸区域大小等信息。而人脸跟踪则需要进一步输出所检测到的人脸位置、大小等状态随时间的连续变化情况。
(3)特征提取
通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛、眉毛、鼻子、嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。
根据人脸特征点检测与标定的结果,通过某些运算得到人脸特征的描述(这些特征包括:全局特征和局部特征,显式特征和统计特征等)。
5
(4)基于人脸图像比对的身份识别
即人脸识别(Face Identification)问题。通过将输入人脸图像与人脸数据库中的所有已知原型人脸图像计算相似度并对其排序来给出输入人脸的身份信息。这包括两类识别问题:一类是闭集(Close Set)人脸识别问题,即假定输入的人脸一定是人脸库中的某个个体;另一类是开集(Open Set)识别,即首先要对输入人脸是否在已知人脸库中做出判断,如果是,则给出其身份。
(5)基于人脸图像比对的身份验证
即人脸确认(Face Verification)问题。系统在输入人脸图像的同时输入一个用户宣称的该人脸的身份信息,系统要对该输入人脸图像的身份与宣称的身份是否相符作出判断。
1.5 论文的内容及组织
第二章主要介绍人脸识别系统中所用到的仿真软件Matlab,介绍了在人脸图像识别过程中所需要的图像处理技术,包括:一些基本操作、格式转换、图像增强等。并做了一个Matlab图像处理功能的实例
第三章主要始涉三个方面:首先是对人脸识别系统的构成做详细论述;其次就是对人脸识别过程中的关键环节人脸检测、特征提取和图像预处理做详细介绍;最后就是Matlab在人脸识别系统中的具体应用,即人脸图像识别的具体技术,并用Matlab进行仿真试验并得到结果。
第四章是对人脸图像识别体系构架的设计,并给出了人脸识别用到的理论知识即直方图差异对比,并编写matlab代码实现人脸图像识别。
第五章总结了全文的工作并对以后的需要进一步研究的问题进行了展望。
6
第二章 图像处理的Matlab实现
2.1 Matlab简介
由Math Work公司开发的Matlab语言语法限制不严格,程序设计自由度大,程序的可移植性好。Matlab还推出了功能强大的适应于图像分析和处理的工具箱,常用的有图像处理工具箱、小波分析工具箱及数字信号处理工具箱。利用这些工具箱,我们可以很方便的从各个方面对图像的性质进行深入的研究。Matlab图像处理工具箱支持索引图像、RGB图像、灰度图像、二进制图像并能操作.bmp、.jpg、.tif等多种图像格式文件。
2.2 数字图像处理及过程
图像是人类获取信息、表达信息和传递信息的重要手段。利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。
2.2.1图像处理的基本操作
读取和显示图像可以通过imread()和imshow()来实现;图像的输出用imwrite()函数就可以很方便的把图像输出到硬盘上;另外还可以用imcrop()、imrisize()、imrotate()等来实现图像的裁剪、缩放和旋转等功能。
7
共分享92篇相关文档