云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020高考数学二轮复习专题二三角函数与平面向量第3讲平面向量课时规范练文

2020高考数学二轮复习专题二三角函数与平面向量第3讲平面向量课时规范练文

  • 62 次阅读
  • 3 次下载
  • 2025/6/6 17:50:38

2019年

【2019最新】精选高考数学二轮复习专题二三角函数与平面向量第3

讲平面向量课时规范练文

一、选择题

1.(2016·全国卷Ⅲ)已知向量=,=,则∠ABC=( ) A.30° B.45° C.60° D.120°

解析:||=1,||=1,cos ∠ABC==.

因为∠ABC∈[0°,180°],

所以∠ABC=30°.

答案:A

2.(2017·北京卷)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”

的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件

解析:存在负数λ,使得m=λn,则m·n=λn·n=λ|n|2<0,因而是充分条

件,反之m·n<0,不能推出m,n方向相反,则不是必要条件.

答案:A

3.(2017·长春中学联考)设x∈R,向量a=(x,1),b=(4,-2),且a∥b,则

|a+b|=( )

A. B.5 C. D.485 解析:因为a∥b,所以x·(-2)=1×4,

得x=-2,

所以a+b=(2,-1),|a+b|==.

2019年

答案:A

4.如图,BC、DE是半径为1的圆O的两条直径,=2,则·等于( )

B.-9 D.-9 48A.- C.-

解析:因为=2,圆O的半径为1,所以||=, 所以·=(+)·(+)=2+·(+)+·=+0-1=-.

答案:B

5.(2017·安徽江淮十校第二次联考)已知平面向量a、b(a≠0,a≠b)满足|a|=

3,且b与b-a的夹角为30°,则|b|的最大值为( )(导学号 55410109)

A.2 B.4 C.6 D.8

解析:令=a,=b,则b-a=-=,如图,

因为b与b-a的夹角为30°,

所以∠OBA=30°, 因为|a|=||=3, 所以由正弦定理=

→|OB| 得,|b|=||=6·sin ∠OAB≤6.sin ∠OAB 答案:C 二、填空题

6.(2017·全国卷Ⅲ)已知向量a=(-2,3),b=(3,m),且a⊥b,则m=________.

解析:由题意,得-2×3+3m=0,

所以m=2. 答案:2

7.(2017·潍坊二模)如图,在△ABC中,O为BC中点,若AB=1,AC=3,向量,

的夹角为60°,则||=________.

解析:向量,的夹角为60°,所以·=||·||cos 60°=1×3×=,又=(+),

2019年

所以

→2=(+)2=(2+2·+2),即AO2 答案:

1328.(2017·济南调研)在△ABC中,已知·=tan A,当A=时,△ABC的面积为

________.

解析:令角A,B,C的对边分别为a,b,c,

则·=||||cos A=cbcos A=tan A,

因为A=,所以bc=,即bc=,

所以△ABC的面积S=bcsin A=××=.

答案:6 三、解答题

9.设向量a=(sin x,sin x),b=(cos x,sin x),x∈.

(导学号 55410110)

(1)若|a|=|b|,求x的值;

(2)设函数f(x)=a·b,求f(x)的最大值.

解:(1)由题意,得|a|2=(sin x)2+(sin x)2=4sin2x,

|b|2=cos2 x+sin2x=1, 因为|a|=|b|,所以4sin2x=1.

由x∈,从而sin x=,

所以x=.

(2)f(x)=a·b=sin x·cos x+sin2x=sin 2x-cos 2x+=sin+,

当x=∈时,sin取最大值1.

所以f(x)的最大值为.

10.已知在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,向量p=(cos

B+sin B,2sin B-2),q=(sin B-cos B,1+sin B),且p⊥q.

(1)求B的大小;

12019年

(2)若b=2,△ABC的面积为,求a,c.

解:(1)因为p⊥q,

所以p·q=(cos B+sin B)(sin B-cos B)+(2sin B-2)(1+sin B)=0,

则sin2B-cos2B+2sin2B-2=0,

即sin2B=,

又角B是锐角三角形ABC的内角,

所以sin B=,所以B=60°.

(2)由(1)得B=60°,又△ABC的面积为,

所以S△ABC=acsin B,即ac=4.① 由余弦定理得b2=a2+c2-2accos B,

又b=2,所以a2+c2=8,②

取立①②,解得a=c=2.

11.(2017·淄博诊断)已知函数f(x)=sin ωxcos ωx-cos2ωx+(ω>0),与

f(x)图象的对称轴x=相邻的f(x)的零点为x=.(导学号 55410111)

(1)讨论函数f(x)在区间上的单调性;

(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量

m=(1,sin A)与向量n=(2,sin B)共线,求a,b的值. 解:(1)f(x)=sin 2ωx-+=sin 2ωx-cos 2ωx=sin,

由于f(x)图象的对称轴x=相邻的零点为x=,

得·=-=,

所以ω=1,则f(x)=sin.

令z=2x-,函数y=sin z单调增区间是,k∈Z,

由-+2kπ≤2x-≤+2kπ, 得-+kπ≤x≤+kπ,k∈Z.

设A=, B=,

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2019年 【2019最新】精选高考数学二轮复习专题二三角函数与平面向量第3讲平面向量课时规范练文 一、选择题 1.(2016·全国卷Ⅲ)已知向量=,=,则∠ABC=( ) A.30° B.45° C.60° D.120° 解析:||=1,||=1,cos ∠ABC==. 因为∠ABC∈[0°,180°], 所以∠ABC=30°. 答案:A2.(2017·北京卷)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0” 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:存在负数λ,使得m=

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com