当前位置:首页 > 带电粒子在匀强磁场中的运动专题
Eqy=t2 2m运动时间 动能 t=θθmT= 2πBqLt= v0变化 不变 例题1、如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一带电荷量为+q、质量为m的粒子,自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场。以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。 (1)求粒子过Q点时速度的大小和方向。
(2)若磁感应强度的大小为一确定值B0,粒子将以垂直y轴的方向进入第二象限,求B0;
(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。
例题2、如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里。结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处距A点2d(AG⊥AC)。不计离子重力,离子运动轨迹在纸面内。求: (1)此离子在磁场中做圆周运动的半径r; (2)离子从D处运动到G处所需时间; (3)离子到达G处时的动能。
5、带电粒子在复合场中的运动 (1)是否考虑粒子重力
①对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与静电力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。 ②在题目中有明确说明是否要考虑重力的,按题目要求处理。
③不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
(2)带电粒子在复合场中运动的三种情况
①当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解。
②当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解。 ③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
例题3、如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴。调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点。 (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B的值;
(3)现保持喷口方向不变,使其竖直下移到两板中间的位置。为了使墨滴仍能到达下板M点,应将磁感应强度调至B′,则B′的大小为多少?
例题4、如图所示,与水平面成37°的倾斜轨道AC,其延长线在D点与半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上)。一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为
vC=
100
m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,7
2
在F点速度为vF=4 m/s(不计空气阻力,g=10 m/s,cos 37°=0.8)。求: (1)小球带何种电荷?
(2)小球在半圆轨道部分克服摩擦力所做的功;
(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离。
四、带电粒子在交变电磁场中的运动:解答本类问题的三个关键点 (1)熟悉带电粒子在电场和磁场中运动的特征。
(2)抓住电场和磁场交换时粒子受力情况的变化以及速度的关联。
(3)粒子在电场中都是做匀加速直线运动,在磁场中都是做匀速圆周运动时,需注意的是电场和磁场交换时间的限制以及两板间距离的限制。
例题1、两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场①,变化规律分别如图甲、乙所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0时由负极板释放一个初速度为零②的带负电的粒子(不计重力)。若电场强度E0、磁感应强度B0、
2
q2πm10πmE0
粒子的比荷均已知,且t0=③ 两板间距h=。
mqB0qB20
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值;
(2)求粒子在极板间做圆周运动的最大半径(用h表示)④;
(3)若板间电场强度E随时间的变化仍如图甲所示,磁场的变化改为如图丙所示⑤,试画出粒子在板间运动的轨迹图(不必写计算过程)。
审破题 题 ① 方波变化,有电无磁,有磁无电,粒子在电场中做匀加速直线运动,在磁场中做匀速圆周运动 电磁场交替出现的时间恰为粒子做一次完整圆周运动的时间 粒子在各阶段沿垂直极板方向的位移之和小于h
练习:
1、如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行。一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。求: (1)电场强度E的大小;
(2)粒子到达a点时速度的大小和方向;
(3)abc区域内磁场的磁感应强度B的最小值。
② 粒子由静止开始先在电场中匀加速运动 ③ ④ ⑤ 粒子运动半周即改变绕向
2、一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中。粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;(2)圆筒的半径R;
2
(3)保持M、N间电场强度E不变,仅将M板向上平移d,粒子仍从M板边缘P处由静止释放,粒子
3自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
3、在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制,如图甲所示的xOy平面处于匀强电场和匀强磁场中,电场强度E和磁感应强度B随时间t作周期性变化的图象如图3乙、丙所示。x轴正方向为E的正方向,垂直纸面向里为B的正方向,在坐标原点O有一粒子P,τ
其质量和电荷量分别为m和+q。不计重力,在t=时刻释放P,它恰能沿一定轨道做往复运动。
2(1)求P在磁场中运动时速度的大小v0; (2)求B0应满足的关系;
τ??(3)在t0?0
共分享92篇相关文档