云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 指数函数教学设计

指数函数教学设计

  • 62 次阅读
  • 3 次下载
  • 2025/5/3 9:37:37

《指数函数图像及其性质》教学设计

一.教学内容分析

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第三章第3.1.2节《指数函数》。根据我所任教的学生的实际情况,我将《指数函数》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

高中数学考试大纲中指出“理解指数函数的概念,理解指数函数的单调性,理解指数函数图象通过的特殊点,会画底数为2,3,10的指数函数的图象”.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

二.学生学情分析

学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。

学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。

我所任教的学生素质较高,他们的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

三.设计思想

在本课的教学中我努力做到以下两点:

⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

四.教学目标

知识与技能:了解指数函数模型的实际背景,理解指数函数的概念和意义,理解指数函数的单调性与特殊点。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在解决简单实际问题的过程中,体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

五.教学重点与难点

教学重点:指数函数的概念、图象和性质。 教学难点:指数函数的性质及应用。 六.教学过程:

(一)创设情景、提出问题(约3分钟)

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?

学生回答: y与 x之间的关系式,可以表示为y=2x 。

问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答: y与 x之间的关系式,可以表示为y=0.84x 。 【学情预设:学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的范围。】

(二)师生互动、探究新知 1.指数函数的定义

⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)

①y?2x(x?N?)和y=0.84x(x?N?)这两个解析式有什么共同特征? ②它们能否构成函数?

③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现y?2x,y=0.84x是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。】

引导学生观察,两个函数中,底数是常数,指数是自变量。

师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成y?ax的形式。自变量在指数位置,所以我们把它称作指数函数。

⑵让学生讨论并给出指数函数的定义。(约6分钟) 对于底数的分类,可将问题分解为:

①若a<0会有什么问题?(如a=-6,x?则在实数范围内相应的函数值不存在)

②若a=0会有什么问题?(对于x?0 ,ax都无意义)

③若a=1又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定 且 . 在这里要注意生生之间、师生之间的对话。

【学情预设: ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么a<0, a=0, a=1不行?

②若学生只给出y?ax,教师可以引导学生通过类比一次函数(y?kx?b,k?0)、

k反比例函数(y?,k?0)、二次函数(y?ax2?bx?c,a?0)中的限制条件, 思考

x指数函数中底数的限制条件。】

【设计意图 :①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

②讨论出a?0,且a?1,也为下面研究性质时对底数的分类做准备。】

接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y=4·2x,y=23x,y=-5x

【学情预设:学生可能只是关注指数是否是变量,而不考虑其它的。】 2.指数函数的图像和性质

(1)分组活动,合作学习(约8分钟)

师:请同学们画出a=2,a=3,a=1/2,a=1/3的指数函数图像(分成四组,互相研究)

教师巡视,同学们大都采用描点的办法,之后教师用几何画板画出图像。 师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。 ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;

②每一大组再分为若干合作小组(建议5人一小组); ③每组都将研究所得到的结论或成果写出来以便交流。

【学情预设:考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。】

【设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。】

(2)交流、总结(约10~12分钟)

教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求

12

学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?

师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的东西呢?(如过定点(0,1),y?ax与y?()x的图象关于y轴对称) 【学情预设: ①首先选一从解析式的角度研究的小组上台汇报;

②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报; ③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。】

【设计意图: ①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;

③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。】

师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

教师通过几何画板中改变参数a的值,追踪y?ax的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。

师生共同总结指数函数的图象和性质,教师可以边总结边板书。

图 01 1a 象

搜索更多关于: 指数函数教学设计 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

《指数函数图像及其性质》教学设计 一.教学内容分析 本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第三章第3.1.2节《指数函数》。根据我所任教的学生的实际情况,我将《指数函数》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。 高中数学考试大纲中指出“理解指数函数的概念,理解指数函数的单调性,理解指数函数图象通过的特殊点,会画底数为2,3,10的指数函数的图象”.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com