当前位置:首页 > 模拟考试题(第7套)
填写表中空白处的数值,并判断此结果是否支持了上述理论。
Dependent Variable: Y Method: Least Squares Sample: 134
Included observations: 34 Variable
C X
R-squared
Adjusted R-squared S.E. of regression
CoefficieStd. Error t-Statisti
nt c 5.540940 0.474514
0.968608 0.055077
Prob. 0.0000 0.0000
Mean dependent var 13.64118 S.D. dependent var 2.436480 Akaike info 3.506937 criterion
Sum squared resid 59.01394 Schwarz criterion 3.596723 Log likelihood -57.61793 F-statistic Durbin-Watson stat 1.796718 Prob(F-statistic) 0.000000
解:
Dependent Variable: Y Method: Least Squares Sample: 134
Included observations: 34
Variable
C X
R-squared
Adjusted R-squared S.E. of regression
CoefficieStd. Error t-Statisti
nt c 5.540940 0.474514
0.968608 0.055077
5.7205 8.6155
Prob. 0.0000 0.0000
0.6987 Mean dependent var 13.64118 0.6893 S.D. dependent var 2.436480 1.358008 Akaike info 3.506937
(criterion
59.0139434?2)
Sum squared resid 59.01394 Schwarz criterion 3.596723 Log likelihood -57.61793 F-statistic 74.227 Durbin-Watson stat 1.796718 Prob(F-statistic) 0.000000
R
模型结果支持了理论,因为期望回报及其标准差之间存在显著的线性关系。
2、下面结果是利用某地财政收入对该地第一、二、三产业增加值的回归结果。根据这一结果试判断该
2?e?1??y2i2i Sy?1*n?1?y2i 模型是否存在多重共线性,说明你的理由。
Dependent Variable: REV Method: Least Squares Sample: 1 10
Included observations: 10 Variable C GDP1 GDP2 GDP3
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
解:存在严重多重共线性。因为方程整体非常显著,表明三次产业GDP对财政收入的解释能力非常强,但是每个个别解释变量均不显著,且存在负系数,与理论矛盾,原因是存在严重共线性。
3、 以广东省东莞市的财政支出作为被解释变量、财政收入作为解释变量做计量经济模型,即
Coefficient Std. Error t-Statistic 17414.63 -0.277510 0.084857 0.190517
14135.10 1.232013 0.146541 -1.893743 0.093532 0.907252 0.151680 1.256048
Prob. 0.2640 0.1071 0.3992 0.2558 63244.00 54281.99 20.25350 20.37454 320.4848 0.000001
0.993798 Mean dependent var 0.990697 S.D. dependent var 5235.544 Akaike info criterion 1.64E+08 Schwarz criterion -97.26752 F-statistic 1.208127 Prob(F-statistic)
Y????X??,方程估计、残差散点图及ARCH检验输出结果分别如下:
方程估计结果:
Dependent Variable: Y
Method: Least Squares
Date: 05/31/03 Time: 12:42 Sample: 1980 1997
Included observations: 18
Variable
C X R-squared Adjusted R-squared S.E. of regression
CoefficieStd. Error t-Statisti
nt c -2457.310 0.719308 680.5738 -3.610644 0.011153 64.49707 Prob. 0.0023 0.0000 0.996168 Mean dependent var 25335.11 0.995929 S.D. dependent var 35027.97 2234.939 Akaike info 18.36626
criterion
Sum squared resid 79919268 Schwarz criterion 18.46519 Log likelihood -163.2963 F-statistic 4159.872 Durbin-Watson stat 2.181183 Prob(F-statistic) 0.000000
残差与残差滞后1期的散点图:
ARCH检验输出结果:
ARCH Test: F-statistic Obs*R-squared
2.886465 Probability 7.867378 Probability
0.085992
0.096559
Test Equation:
Dependent Variable: RESID^2 Method: Least Squares
Date: 06/10/03 Time: 00:33 Sample(adjusted): 1984 1997
Included observations: 14 after adjusting endpoints
Variable C
RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4) R-squared
Adjusted R-squared S.E. of regression
CoefficieStd. Error t-Statisti
nt c -9299857. 0.033582 -0.743273 -0.854852 37.04345
7646794. -1.216177 0.308377 0.108900 0.320424 -2.319650 11.02966 -0.077505 10.91380 3.394182
Prob. 0.2549 0.9157 0.0455 0.9399 0.0079
0.561956 Mean dependent var 5662887. 0.367269 S.D. dependent var 16323082 12984094 Akaike info 35.86880
criterion
Sum squared resid 1.52E+15 Schwarz criterion 36.09704 Log likelihood -246.0816 F-statistic 2.886465 Durbin-Watson stat 1.605808 Prob(F-statistic) 0.085992
根据以上输出结果回答下列问题:
(1)该模型中是否违背无自相关假定?为什么?(??0.05,dl?1.158,du?1.391)
2(2)该模型中是否存在异方差?说明理由(显著性水平为0.1,?0。 .1(4)?7.7794)
(3)如果原模型存在异方差,你认为应如何修正?(只说明修正思路,无需计算) 解:(1)没有违背无自相关假定;第一、残差与残差滞后一期没有明显的相关性;第二、根据D-W值应该接受原假设;(写出详细步骤)
(2)存在异方差(注意显著性水平是0.1);(写出详细步骤) (3)说出一种修正思路即可。
共分享92篇相关文档