当前位置:首页 > 数字控制双向半桥DC-DC变换器的设计
**大学毕业设计(论文)
统关键性部件[7][8]。
为了发挥光伏电池的效能,太阳能电池列阵工作在最大功率跟踪点。当日光充足时,太阳能阵列除保证负载的正常供电外,将多余能量通过双向DC-DC变换器存储到蓄电池中;当日光不足时,太阳能阵列不足以提供负载所需的电能,双向DC-DC变换器工作在反向模式,由蓄电池向负载提供电能。双向DC-DC变换器充当蓄电池的充电器和放电器,它设计的好坏直接影响到航天器上蓄电池的利用效率和寿命长短。
另外适合于偏远地区应用的太阳能照明装置中,双向DC-DC变换器可以减少变换器的个数,从而提高整个系统的效率[9]。
太阳能电池阵列直流总线负载功率控制单元双向DC-DC变换器图1-5 航天直流电源系统 Fig1-5 DC power for the space station
蓄电池
1.3.3 电动汽车、各种重型车辆的车载电源系统
电动汽车、各种重型车辆的车载电源系统中,双向DC-DC变换器的应用越来越广泛。本论文即是要研究应用在该领域的一种双向DC-DC变换器。在电动汽车中,电动机是典型的有源负载,从其输入端来看既能输出能量也可吸入能量。双向DC-DC变换器的一大应用场合便是电机驱动系统,特别是应用蓄电池为能源的电机驱动系统[3][9-13]。由于电动汽车的电机运转速度极宽,频繁加减速,而且蓄电池的电压变化范围很大,相对于一般的驱动方法,使用双向DC-DC变换器可以明显提高电机的驱动性能;一方面,双向DC-DC变换器可以将制动刹车时的动能转化而来的电能回馈给蓄电池,这样,不但可以节省能源,提高效率,优化电机控制性能,同时还可以避免在使用单向DC-DC变换器时出现的变换
5
数字控制双向半桥DC/DC变换器的设计
器输出端出现浪涌电压等不利情况。在坦克、装甲车等重型车辆中,仍采用柴油或汽油发动机驱动,发动机带动发电机发电,作为车中其他设备的供电电源,但发动机的启动需要电源。通常的办法是,发动机启动时由蓄电池(12V或24V)经双向DC-DC变换器升压至300V给电机供电,让电机工作在电动状态带动发动机启动,发动机启动完毕,电机即由电动状态转变为发电状态,为车中其他设备提供电源,同时经双向DC-DC变换器给蓄电池充电。
对直流电机来说,可采用图1-6所示的双向DC-DC变换器直接驱动。对于交流电机、同步电机、永磁无刷电机等电机则采用间接驱动的方法,双向DC-DC变换器可以调节逆变器的输入电压,并使得回馈制动控制容易。近年来,一些低输入感抗的电机应用越来越多,主要得益于它的功率密度高、转动惯量低、转动平滑以及成本低等优点。但对于通常的固定电压驱动的方式来讲,低感抗必然意味着会出现大的电流纹波,同时造成大的铁耗和开关损耗,这时使用双向DC-DC变换器就可以解决这个问题。
蓄电池双向DC-DC变换器图1-6 双向DC-DC变换器直接驱动直流电机
Fig1-6 Bi-directional DC-DC converterdriving DC motor directly
直流电机 燃料电池和混合能源电动汽车也需要双向DC-DC变换器,如图1-7所示,燃料电池系统中一般含有一个压缩电机消耗单元,正常运转情况下,该压缩机可由燃料电池输出电压供电,但在电动汽车启动时,燃料电池电压尚未建立起来,需要辅助电源来供电。这个辅助电源有两个功用:1)在燃料电池发电前通过双向DC-DC变换器升压,提供高电压总线的能量;2)当汽车制动时,逆变器和双向DC-DC变换器再将再生制动的能量存储到蓄电池中。双向DC-DC变换器在电动汽车和车载、舰载系统中的应用还包括为弥补蓄电池瞬时输出功率有限的缺陷,通过加入超容电容和双向DC-DC变换器达到增加瞬时功率,从而提高系统的加减速性能[14][15]。
6
**大学毕业设计(论文)
燃料电池电压箝位逆变器交流电机蓄电池双向DC-DC变换器控制器压缩机 图1-7 燃料电池电动汽车电力驱动系统 Fig1-7 Power driving system of fuel cell vehicles
1.3.4 蓄电池能量储备系统
双向DC-DC变换器还应用于蓄电池能量储备系统[16],以达到电网调峰、高效用电以及提高电网质量的目的,同时也可加入有源滤波功能。另外,双向DC-DC变换器也可应用于地面的大功率直流储能系统中。
1.4 双向DC-DC变换器软开关技术现状
硬开关双向DC-DC变换器在电流连续工作模式下会遇到严重的问题,这往往与有源开关器件(如MOSFET)的体内寄生二极管有关,因它关断过程中的反向恢复电流而产生的电流尖峰对开关器件有极大的危害。一种解决办法就是采用额外串并快速二极管的方法,这样在一定程度上减小了反向恢复电流,但不足之处是除了增加半导体器件外,还会增加变换器的通态损耗,对非高压应用场合中提高效率并没有贡献。由于双向DC-DC变换器的应用场合的特殊性,一般需要其体积尽可能减小,重量尽可能减轻。为提高其功率密度和动态性能,双向DC-DC变换器正向高频化方向发展,而高频化必需要解决好开关损耗问题。近年来,国内外在双向DC-DC变换器方面的研究重点也主要集中在这个方面:高频化的同时如何使用软开关技术降低其开关损耗,从而提高变换器的效率。
软开关技术给DC-DC变换器的性能带来了很大的改进,它降低了开关器件的电压电流应力,软化了器件的开关过程,减小了开关损耗,提高了变换器的工作效率。软开关技术为变换器的高频化提供了可能性,从而大大缩小了变换器的体积和重量,功率密度和动
7
数字控制双向半桥DC/DC变换器的设计
态性能得到了提高,另外,也有助于减小变换器对其它电子设备的电磁干扰。
多年来,单向直流变换器软开关技术取得了长足发展,但不能简单地把它们套用到双向DC-DC变换器中,因为当能量传输方向改变之后,软开关的谐振时序通常会改变,这样不但实现不了变换器的软开关工作,甚至可能增加开关应力和损耗。因此在某些应用场合实现双向的软开关较为困难,所以,在某些应用场合,变换器在功率传输大的方向上使用软开关工作模式,而在功率传输小的方向上仍以硬开关工作模式为主。
近年来,己有不少软开关双向DC-DC变换器电路拓扑出现,现讨论几种: 1) 谐振类双向DC-DC变换器[17]
谐振技术是出现较早的软开关技术。它降低了开关器件的开关损耗,但该变换器需要变频工作,使得变换器的闭环控制器的优化设计困难,而且很难削减变换器的噪声。如图1-8所示。
LrLV1S1CrS2S3V2
图1-8 ZCS/ZVS-SCyR Buck/Boost双向DC-DC变换器 Fig1-8 ZCS/ZVS-SCyR Buck/Boost bi-directional DC-DC converter
其中Lr,Cr为谐振电感和谐振电容。而如图1-9所示的电路拓扑为恒频零电压开关多谐振双向DC-DC变换器,其中S1,S2均为零电压开关工作。恒频多谐振双向DC-DC变换器在输入电压或负载变化时,都是通过调节变换器中两个开关管各自的开通持续时间来保证频率不变,并且仍能维持软开关工作。谐振类变换器存在功率期间的电压、电流应力大,通态损耗高,软开关的负载范围受到限制等缺陷,还有谐振类变换器对器件的寄生参数分散性较为敏感,不太适合工业化大规模生产,多数谐振类双向DC-DC变换器仅适用百瓦以下的小功率场合。
8
共分享92篇相关文档