当前位置:首页 > The Planar Shape of Rock Joints - 图文
ThePlanarShapeofRockJoints(a)SP1SP2(b)SP1Long axisSP2(c)SP1SP1Long axis Long axisSP2SP2SP1SP1SP2SP2Long axisLong axis Fig.11Threepossiblecasesforwhichtheaveragetracelengthsontwosamplingplanesareaboutequal:ajointsareequidimensional(circular);bjointsarenon-equidimensional(elliptical),withlongaxesinasingleorientation.Thetwosamplingplanes,SP1andSP2,areorientedinsuchawaythatthetracelengthsonthemareaboutequal,andcjointsarenon-equidimensional(elliptical),withlongaxesrandomlyorientated.Thetwosamplingplanes,SP1andSP2,areorientedinsuchawaythattheaveragetracelengthsonthemareaboutequal(modi?edfromZhangetal.2002)1
felT?
l
Zq???????????????????geaT
Mla
l=M
eMaT2àl2
dael aMTe1T
wherelisthelengthofatrace;laisthemeanofmajoraxislengthpa;????????????????????andMisafactorwhichcanbedeterminedby
M?p?????????????????????????tan2bt1
k2tan2bt1e2T
inwhichk=a/bistheaspectratioofthejoint;andbistheanglebetweenthejointmajoraxisandthetraceline(notethatbismeasuredinthejointplane)(seeFig.12).Obvi-ously,bwillchangefordifferentsamplingplanes.Foraspeci?csamplingplane,however,therewillbeonlyonebvalueforajointsetwithadeterministicorientation.Itisnotedthatf(l)inEq.1isthetruetracelengthdistribution.Iff(l)isobtainedfromthemeasuredtracelengthdata,samplingbiasesshouldandcanbeconsidered(PriestandHudson1981;ZhangandEinstein2000).
63
MinoraxisLine parallel to traceline and passing b= a/k Majorthrough joint center aaxisβ TracelinelFig.12Parametersusedinthede?nitionofanellipticaljoint(afterZhangetal.2002)BasedonEq.1,Zhangetal.(2002)derivedexpressionsfordeterminingthemeanllandstandarddeviationrloftracelengthsfromthemeanlaandstandarddeviationraofjointsizea,respectivelyforthelognormal,negativeexponentialandGammadistributionofjointsizea(seeTable2)(aisthemajoraxislengthofanellipticaljoint).UsingtheexpressionsinTable2,onecaninvestigatetheeffectofsamplingplaneorientationontracelengths.Figure13showsthevariationofthemeanandstandarddeviationoftracelengthswithb,respectivelyforthelognormal,negativeexponentialandGammadistributionofjointsizea.Forotherdistributionformsofjointsizea,similar?gurescanbeobtained.Sincebistheanglebetweenthetracelineandthejointmajoraxis,itisrelatedtothesamplingplaneorientationrelativetothejoint.Itcanbeseenthat,forallthethreedistributionformsofjointsizea,thereareextensiverangesofsamplingplaneorienta-tions,re?ectedbyb,overwhichboththemeanandstan-darddeviationoftracelengthsshowlittlevariation,especiallyforlargekvalues;thisissodespitetheconsid-erabledifferencebetweenthemaximumandtheminimum,respectively,ofthemeanandstandarddeviationoftracelengths.
TheresultsinFig.13couldwellexplainwhyBridges(1976)andEinsteinetal.(1979)founddifferentmeantracelengthsondifferentlyorientedsamplingplanes,whereasRobertson(1970)andBarton(1977)observedthemtobeapproximatelyequal.Ineachofthesereports,thenumberofdifferentlyorientedsamplingplaneswasverylimitedand,dependingontherelativeorientationsofthesamplingplanes,theauthorscouldobserveeitherapproximatelyequalmeantracelengthsorsigni?cantlydifferentmeantracelengths.Forexample,inBridges(1976)andEinsteinetal.(1979),thetwosamplingplanesmightberespectivelyintheb=0–20°(or160–180°)rangeandtheb=40–140°range,orviceversa.FromFig.13,thiswouldresultinverydifferentmeantracelengths.Ontheotherhand,inRobertson(1970)andBarton(1977),thetwosamplingplanesmightbebothintheb=40–140°range(i.e.,inthe
123
64
Table2Expressionsfordeterminingthemeanllandstandarddeviationrloftracelengthsfromthemeanlaandstandarddeviationraofjointssizea
Distributionformofg(a)Lognormal
llpM?elaT2teraT2??
4la
L.Zhang,H.H.Einstein
(rl)232MelaTteraT
hi2
à3p2M2elaT2elaT2teraT2
48elaT42
h
22
i3
Negative
exponentialGamma
pM2la
pM?elaT2teraT2??
4la
e16àp2TM2
42
elaT2
2
32MelaTteraT
h
elaTt2eraThi2
à3p2M2elaT2teraT2
48elaT22
ih
22
i
Mean trace length, μl, and s. d. of trace length, σl (m) Mean trace length, μl, and s. d. of trace length, σl (m) 9.08.07.06.05.04.014.013.012.011.010.09.08.07.06.05.04.03.02.01.00.00180g(a) is Lognormal withμa= 8.0 m and σa= 4.0 mMean trace lengths. d. of trace lengthg(a) is Negative Exponential withμa=σa= 8.0 mMean trace lengths. d. of trace lengthk= 1k= 1k= 1k= 1k= 2k= 23.02.01.0k= 4k= 4(a)0.00180302106024090270120300k= 8(b)302106024090270120300k= 8150330180360150330180360β(degrees)β (degrees)Mean trace length, μl, and s. d. of trace length, σl (m) 9.08.07.06.05.0g(a) is Gamma withμa= 8.0 m and σa= 4.0 mMean trace lengths. d. of trace lengthk= 1k= 14.03.02.01.00.0k= 2k= 4(c)302106024090270120300k= 80180150330180360β(degrees)Fig.13Variationofmeanandstandarddeviation(s.d.)oftracelengthwithbfordifferentdistributionsofjointsizea:aLognormal,bnegativeexponential,andcgamma123
ThePlanarShapeofRockJoints‘‘?at’’tracelengthpartofFig.13),orrespectivelyinsomebrangesapproximatelysymmetricalaboutb=90°.Itshouldbenotedthatthecommentsabovearesimplyassumptions,becausenoinformationaboutthebvaluescanbefoundintheoriginalpapersorreports.
6DeterminationofJointShapefromTraceDataThediscussionofobservedjointshapeshasshownthatsomejointsareelliptical(possiblycircularbutrarely).Suchjointsoccurinunboundedorweaklyboundedrock.Ontheotherhand,boundedjointsareusuallyrectangular.Todeterminejointshapefromjointtraces,thefollowinggeneraltwo-stepprocesscanbefollowed:
Step1Evaluationofgeologicinformation
Basedongeologicinformationmostlyfromoutcropsorgeneralknowledgeofthearea,evaluatethepossibleshapeoffractures.Informationfromoutcropsmaybelimitedinwhichcaseeducatedassumptionsneedtobemadeifthefracturecanbeapproximatedbyanellipseorarectangle.Jointsnotaffectedbyadjacentgeologicalstructuressuchasbeddingboundariesorpre-existingfracturestendtobeelliptical,butjointsaffectedbyorintersectingsuchgeologicalstructurestendtoberectangles.
Step2Characterizejointsfromjointtraces
Basedonmeasuredtracelengthsondifferentsamplingplanes,jointscanbecharacterizedfollowingtheproce-duresinSects.6.1and6.2,respectively,forellipticalandrectangularjoints.
6.1CharacterizationofEllipticalJoints
Forellipticaljoints,theprocedureofZhangetal.(2002)asoutlinedbelowcanbefollowedtoestimatejointshapeandsize:(a)
Obtainthetracelengthdataondifferentsamplingwindows(outcrops)andobtainthetruetracelengthdistributionbyconsideringthesamplingbiases(PriestandHudson1981;ZhangandEinstein2000).
(b)Assumeamajoraxisorientationandcomputetheb
(theanglebetweenjointmajoraxisandtraceline)valueforeachsamplingwindow(seeFig.12).
(c)Fortheassumedmajoraxisorientation,computelaandraofthejointsize,usingexpressionsderivedfromthegeneralstereologicalrelationship(Eq.1),fromthetracelengthdataofeachsamplingwindow,byassumingdifferentaspectratioskanddifferentdistributionformsofg(a).Theresultsarethenusedtodrawthecurvesrelatingla(andra)tok,respectively,
65
Fig.14Variationoflaandrawithaspectratiokforassumedmajoraxisorientationofa0°/0°,b30°/0°,andc60°/0°(afterZhangetal.2002)
fortheassumeddistributionformsofg(a)[see,e.g.,Fig.14forassumedlognormaldistributionofg(a)].(d)Repeatsteps(b)and(c)untilthecurvesrelatingla(andra)tokfordifferentsamplingwindowsintersectinonepoint(see,e.g.,Fig.14b).Themajoraxisorientationforthiscaseistheinferredactualmajoraxisorientation.Thek,laandravaluesattheintersectionpointsarethecorrespondingpossiblecharacteristicsofthejoints.
6.2CharacterizationofRectangularJoints
Forrectangularjoints,oneofthefollowingthreemethodscanbeusedtocharacterizejointshapeandsize.Itisalso
123
66possibletocombinetwoorallofthethreemethodsforthecharacterization.
Method1Simplymeasurethejointtracesonexposedbeddingsurfacesandgeometricallyinferrectanglesbasedonsimplegeometry.ThecharacterizationofjointsinisolatedsandstonelayersbyPetitetal.(1994)canbeconsideredanexampleofthismethod.
Method2FollowtheprocedureofZhangetal.(2002)asdescribedinSect.6.1toestimatejointshapeandsize;butthestereologicalrelationshipspeci?callyforrectan-gularjointswillbeused.Forexample,thegeneralstereologicalrelationshipbetweentracelengthdistribu-tionandjointsizedistributionderivedbyWarburton(1980b)forparallelogramscanbeused,arectanglebeingaparallelogramwithrightangles.UsingWarbur-ton’sstereologicalrelationship,theexpressionsfordeterminingthemeanandstandarddeviationofjointsizefromthemeanandstandarddeviationoftracelengthscanbederivedfordifferentdistributionsofjointsize.Intheseexpressions,theorientationofasamplingwindowisde?nedbytheanglebetweenasideoftherectangleandthetraceline.Withthesederivedexpres-sions,theprocedureofZhangetal.(2002)canthenbeusedtoestimatethejointshapeandsize.
Method3TreatrectangularjointsasellipsesatthesameaspectratioandfollowtheprocedureofZhangetal.(2002)asdescribedinSect.6.1toestimatejointshapeandsize.TheappropriatenessofusingellipsestorepresentrectangularjointsisdiscussedinSect.6.3.6.3UsingEllipsestoRepresentRectangularJointsConsideranellipseandarectanglewhichhavethesameareaandthesameaspectratio(seeFig.15),i.e.,
yb/2C (L/2,W/2)0a/2xEllipse and rectangle have the same area and the same aspect ratio, i.e. πab = LW and a/b = L/W = k,which lead to L=(π/2)a and W=(π/2)bFig.15Representingarectanglebyanellipsewiththesameareaandthesameaspectratio123
L.Zhang,H.H.Einstein
pab=4?LWe3Ta=b?L=W?k
e4T
whereaandbarerespectivelythemajorandminoraxislengthoftheellipse;andLandWarerespectivelythelengthandwidthoftherectangle.FromEqs.3and4,LandWcanpberelatedrespectivelytoaL????andbasfollows
pa?0:87ae5p2T
W????p
2b?0:87be6TIfthecentersoftheellipseandrectangleareatthesamelocationandtheirmajoraxesareinthesamedirection,theareaoftherectanglecoveredbytheellipse(theshadedareainFig.15Aab )canpc?2???p???????????beobtainedas
p4àptsinà1??p???p
??
??p???????????4àp??!2
àsinà1
22e7T
Sotheratioofthecoveredareatothetotalareaofthe
rectangleAc2 is
pA????p???????????p4àp
tsinà1??p???p??
àsinà1??p???????????4àp??!tp
222?0:91
e8T
Aratiogreaterthan0.91willresultforjointsboundedbystraightbeddingboundariesbuthavingcurvedendssuchasthoseshowninFigs.5and6.
Onecanthusstatethatsincetheellipsecoversover90%oftherectangle,itisusuallyappropriatetouseellipticaljointstorepresentrectangularjoints.Usinganellipticalapproximationhastheadvantagethatitssizeandshapecanbeobtainedfromtracelengthdata(asproposedbyZhangetal.2002).Thisholdsevenmoreforpolygonaljointswithalargernumberofsides,say[5.Clearly,thereverse,i.e.,multisidedpolygonscanbeusedtorepresentellipsesisalsoapplicable(seeFig.10).Thismaybeoneoftherea-sonswhypolygonsareusedtorepresentjointsindiscretefracturecodes.
7SummaryandConclusions
Abriefliteraturereviewabouttheshapeofrockjointshasbeenconducted.Intheliterature,someactualobservationsofjointshapehavebeenmadebasedoninformationonjointsurface-morphology,whilemanyresearchershaveusedtracelengthobservationstoapproximatelyinferjointshapes.Researchershavealsoconductedexperimentalstudiesontheshapeofjoints.Theliteraturereviewis
共分享92篇相关文档