云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 正交实验

正交实验

  • 62 次阅读
  • 3 次下载
  • 2025/6/23 23:01:07

三个3水平的因子,做全面试验需要3*3*3=27次试验,现用L9(只要做9次,工作量减少了2/3,而在一定意义上代表了27次试验.。 再看一个用L9(

)安排四个3水平因子的例子。

)来设计试验方案,

[例2]某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、气体流速(C)、还原气体比例(D)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高越好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。 首先根据专业知以确定各因子的水平: 时间:A1=3(小时),A2=4(小时),A3=5(小时) 温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)

流速:Cl=600(毫升/分),C2=400( C3=800(毫升/分)

CO:H2:D1=1:2,D2=2:1,D3=1:1

毫升/分),

这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需3^4=81次试验,而用L9(

)来做只要9次。具体安排如表3。同全面试验比较,工作量少了8/9。由于缩短了试验周期,可以提高试验精度,时间越长误差干扰越大。并且对于多指标问题,采用简单对比法,往往顾此失彼,最适工艺条件很难找;而应用正交表来设计试验时可对各指标通盘考虑,结论明确可靠。

数据分析

正交表的另一个好处是简化了试验数据的计算分折。还是以[例1]为例来说明。按照表2的试验方案进行试验,测得9个转化率数据,见表4。

通过9次试验,我们可以得两类收获。

第一类收获是拿到手的结果。第9号试验的转化率为64,在所做过的试验中最好,可取用之。因为通过L9(

)已经把试验条件均衡地打散到不同的部位,代表性是好的。假如

没有漏掉另外的重要因素,选用的水平变化范围也合适的话,那么,这9次试验中最好的结果在全体可能的结果中也应该是相当好的了,所以不要轻易放过。

第二类收获是认识和展望。9次试验在全体可能的条件中(远不止3^3=27个组合,在试验范围内还可以取更多的水平组合)只是一小部分,所以还可能扩大。精益求精。寻求更好的条件。利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。

其中I、Ⅱ、Ⅲ分别为各对应列(因子)上1、2、3水平效应的估计值,其计算式是: Ⅰi(Ⅱi,Ⅲi)=第i列上对应水平1(2,3)的数据和

K1 为1水平数据的综合平均=Ⅰ/水平1的重复次数 Si为变动平方和=

[例1]的转化率试验数据与计算分析见表4。

先考虑温度对转比率的影响。但单个拿出不同温度的数据是不能比较的,因为造成数据差异的原因除温度外还有其他因素。但从整体上看,80℃时三种反应时间和三种用碱量全遇到了,85℃时、90℃时也是如此。这样,对于每种温度下的三个数据的综合数来说,反应时间与加碱量处于完全平等状态,这时温度就具有可比性。所以算得三个温度下三次试验的转化率之和:

80℃:ⅠA=xl+x2+x3=31+54+38=123; 85℃:ⅡA=x4+x5+x6=53+49+42=144; 90℃:ⅢA=x7+x8+x9=57+62+64=183。

分别填在A列下的Ⅰ、Ⅱ、Ⅲ三行。再分别除以3,表示80℃、85℃、90℃时综合平均意义下的转化率,填入下三行Kl、K2、K3。R行称为极差,表明因子对结果的影响幅度。 同样地,为了比较反应时间;用碱量对转化率的影响,也先算出同一水平下的数据和IB、ⅡB、ⅢB,Ic、Ⅱc、Ⅲc,再计算其平均值和极差。都填入表4中;

由此分别得出结论:温度越高转化率越好,以90℃为最好,但可以进一步探索温度更好的情况。反应时间以120分转化率最高。用碱量以6%转化率最高。所以最适水平是A3B2C2。

正交试验的方差分析 (一)假设检验

在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。其判断步骤如下:

(1)设假设H。正确,可导出一个理论结论,设此结论为R。; (2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;

(3)比较R。与Rl,若R。与Rl没有大的差异,则没有理由怀疑H。,从而判定为:\不舍弃H。\采用H。);若R。与R1有较大差异,则可以怀疑H。,此时判定为:\舍弃H。\。

但是,R1/R。比l大多少才能舍弃H。呢?为确定这个量的界限,需要利用数理统计中关于F分布的理论。

若yl服从自由度为φ1的χ2分布,y2服从自由度为φ2的χ2分布,并且yl、y2相互独立,则(y1/φ1)/(y2/φ2)服从自由度为(φ1,φ2)的F分布。F分布是连续分布,分布模数是两个自由度(φ1,φ2)。称φ1为分子自由度,称φ2为分母自由度。在自由度为(φ1,φ2)的F分布中,某点右侧面积为p,也就是F比此值大的概率为p,把这个值写为 (p)。若检验的显著性水平(或危险率)给定为α时,则可以把 (α)作为临界值来检验假设。

这里,Se/σ2服从自由度为φe,的χ2分布;当H。成立,σ2=0时,SA/σ2也服从自由度为φA的χ2分布;又SA与Se相互成立,所以(SA/(φAσ2)/ Se/(φeσ2))=VA/Ve服从自由度为(φA,φe)的F分布。这就是假定H。正确时的理论结论R。。而试验结论Rl要与理论结论R。相比较。由给定的显著性水平,通常是α=0.05;分子自由度φ1=φA=a-l,

分母自由度φ2=φe=a(n-1);查F分布表得出 (α)。所以H。:αl=α2=……=αa=0(σA2=0)的检验是:(显著性水平α) FA=VA/Ve> (α) → 舍弃H。 FA=VA/Ve≤ (α) → 不舍弃H。

通常, (α)一般性地表示成Fα(φA,φB)。

假设因子A对试验结果的影响不显著,那么A的两个水平的效应该表现为相等或相近,即假设H。:α1=α2=0。如果因子A显著,则舍弃假设。

为了判断因子A是否显著,首先要计算比值显然,这个比值越大,因子A对指标的影响越显著;反之,因子A就不显著。在给定置信度α后,如α=0.05,查F分布表,自由度φA是因子A的,自由度φe是误差的,其临界值Fα(φA,φe),如果FA>Fα(φA,φe)就舍弃假设,可以认为因子A是显著的;如果FA≤Fα(φA,φe)就没有理由否定假设,而只能认为因子A是不显著的。因为按照F分布表的物理念义,F值小于Fα(φA,φe)的概率是95%,即有95%的机会出现小于Fα(φA,φe)的F值,既然出现了这种情况,就有了95%的把握,所以就没有理由否定假设,只能接受假设,认为因子A不显著。另一方面,F值大于Fα(φA,φe)的概率是5%,也就是只有5%的机会出现大于Fα(φA,φe)的F值,这是小概率事件,如果小概率事件居然发生了,则可认为情况异常,假设不可信,必须否定假设,因子A是显著的。对其他因子的显著性检验完全类似。

(二)方差分析表

由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就是误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。 自由度:φT=试验次数一1 φA,B…=水平数一1 φA×B=φA×φB

φe=φT-φA-φB-……-φD

搜索更多关于: 正交实验 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

三个3水平的因子,做全面试验需要3*3*3=27次试验,现用L9(只要做9次,工作量减少了2/3,而在一定意义上代表了27次试验.。 再看一个用L9()安排四个3水平因子的例子。 )来设计试验方案, [例2]某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、气体流速(C)、还原气体比例(D)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高越好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。 首先根据专业知以确定各因子的水平: 时间:A1=3(小时),A2=4(小时),A3=5(小时) 温度:B1=1000(℃),B2=1100(℃),B3=1200(℃) 流速:Cl=600(毫升/分),C2=400( C3=800(毫升/分)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com