云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版初中数学知识点汇总(最全)doc

北师大版初中数学知识点汇总(最全)doc

  • 62 次阅读
  • 3 次下载
  • 2025/5/24 8:12:24

顶点在圆上,并且两边都与圆相交的角,叫做圆周角. ※4. 圆周角定理:

一条弧所对的圆周角等于它所对的圆心角的一半.

※推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; ※推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径; ※四. 确定圆的条件:

※1. 理解确定一个圆必须的具备两个条件:

圆心和半径,圆心决定圆的位置,半径决定圆的大小.

经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上. ※2. 经过三点作圆要分两种情况:

(1) 经过同一直线上的三点不能作圆.

(2)经过不在同一直线上的三点,能且仅能作一个圆. ※定理: 不在同一直线上的三个点确定一个圆.

※3. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:

(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫

做圆的内接三角形.

(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心. (3)三角形的外心的性质:三角形外心到三顶点的距离相等. 五. 直线与圆的位置关系

※1. 直线和圆相交、相切相离的定义:

(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.

(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点. (3)相离: 直线和圆没有公共点时,叫做直线和圆相离. ※2. 直线与圆的位置关系的数量特征:

设⊙O的半径为r,圆心O到直线的距离为d;

①d 直线L和⊙O相交. ②d=r <===> 直线L和⊙O相切. ③d>r <===> 直线L和⊙O相离.

※3. 切线的总判定定理:

经过半径的外端并且垂直于这个条半径的直线是圆的切线. ※4. 切线的性质定理:

圆的切线垂直于过切点的半径.

※推论1 经过圆心且垂直于切线的直线必经过切点. ※推论2 经过切点且垂直于切线的直线必经过圆心.

※分析性质定理及两个推论的条件和结论间的关系,可得如下结论: 如果一条直线具备下列三个条件中的任意两个,就可推出第三个. ①垂直于切线; ②过切点; ③过圆心.

※5. 三角形的内切圆、内心、圆的外切三角形的概念.

和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.

※6. 三角形内心的性质:

(1)三角形的内心到三边的距离相等.

(2)过三角形顶点和内心的射线平分三角形的内角.

由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.

六. 圆和圆的位置关系.

※1. 外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.

(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.

(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一

的公共点叫做切点.

(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.

(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公

共点叫做切点.

(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. ※2. 两圆位置关系的性质与判定:

(1)两圆外离 <===> d>R+r (2)两圆外切 <===> d=R+r

(3)两圆相交 <===> R-r d=R-r (R>r) (5)两圆内含 <===> dr) ※3. 相切两圆的性质:

如果两个圆相切,那么切点一定在连心线上. ※4. 相交两圆的性质:

相交两圆的连心线垂直平分公共弦.

七. 弧长及扇形的面积 ※1. 圆周长公式:

圆周长C=2?R (R表示圆的半径) ※2. 弧长公式:

弧长l?n?R (R表示圆的半径, n表示弧所对的圆心角的度数) 180※3. 扇形定义:

一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形. ※4. 弓形定义:

由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. ※5. 圆的面积公式.

圆的面积S??R (R表示圆的半径) ※6. 扇形的面积公式: 扇形的面积S扇形2n?R2? (R表示圆的半径, n表示弧所对的圆心角的度数) 360※弓形的面积公式:(如图5) A

ABOAOBOBCCC图5

(1)当弓形所含的弧是劣弧时, S弓形?S扇形?S三角形 (2)当弓形所含的弧是优弧时, S弓形?S扇形?S三角形 (3)当弓形所含的弧是半圆时, S弓形?12?R?S扇形 2八. 圆锥的有关概念:

※1. 圆锥可以看作是一个直角三角形绕着直角边所在的直线旋转一周而形成的图形,另一条直角边旋转而成的面叫做圆锥的底

面,斜边旋转而成的面叫做圆锥的侧面. ※2. 圆锥的侧面展开图与侧面积计算:

圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线长、弧长是圆锥底面圆的周长、圆心是圆锥的顶点. 如果设圆锥底面半径为r,侧面母线长(扇形半径)是l, 底面圆周长(扇形弧长)为c,那么它的侧面积是:

11S侧?cl??2?rl??rl

22_ AS表?S侧?S底面??rl??r2??r(r?l)

¤九. 与圆有关的辅助线

_ O_ P1.如圆中有弦的条件,常作弦心距,或过弦的一端作半径为辅助线.

2.如圆中有直径的条件,可作出直径上的圆周角.

3.如一个圆有切线的条件,常作过切点的半径(或直径)为辅助线. _ B_ 6 图 4.若条件交代了某点是切点时,连结圆心和切点是最常用的辅助线.

¤十. 圆内接四边形

若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆. 圆内接四边形的特征: ①圆内接四边形的对角互补;

②圆内接四边形任意一个外角等于它的内错角.

※十一.北师版数学未出理的有关圆的性质定理

1.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 如图6,∵PA,PB分别切⊙O于A、B

∴PA=PB,PO平分∠APB _ A2.弦切角定理:弦切角等于它所夹的弧所对的圆周角。

推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 _ O_ 7 图

_B 如图7,CD切⊙O于C,则,∠ACD=∠B

3.和圆有关的比例线段:

_ D ①相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等; C_ ②推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

如图8,AP?PB=CP?PD

如图9,若CD⊥AB于P,AB为⊙O直径,则CP2=AP?PB 4.切割线定理

①切割线定理,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项; ②推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。 如图10, ①PT切⊙O于T,PA是割线,点A、B是它与⊙O的交点,则PT2=PA?PB

②PA、PC是⊙O的两条割线,则PD?PC=PB?PA

5.两圆连心线的性质

①如果两圆相切,那么切点一定在连心线上,或者说,连心线过切点。 ②如果两圆相交,那么连心线垂直平分两圆的公共弦。

如图11,⊙O1与⊙O2交于A、B两点,则连心线O1O2⊥AB且AC=BC。 6.两圆的公切线

两圆的两条外公切线的长及两条内公切线的长相等。

如图12,AB分别切⊙O1与⊙O2于A、B,连结O1A,O2B,过O2作O2C⊥O1A于C,公切线长为l,两圆的圆心距为d,

半径分别为R,r则外公切线长:L?d2?(R?r)2

如图13,AB分别切⊙O1与⊙O2于A、B,O2C∥AB,O2C⊥O1C于C,⊙O1半径为R,⊙O2半径为r,则内公切线长:

L?d2?(R?r)2

_C _ B _ P _ A_ O_ AD _ 图8 _ A _2 _ O_1O C__ _ B _ 11 图_ D_ D_ P_ BT __ 10 图

_ O_ C_ PO_ _ C

_ B

_ A_ 9 图

_ R_ O_ 1_ d_ A_ O_ 2_ O_ 1_ C_ R_ A_ d_ O_ 2_ r_ 12 图

_ B

_ C_ 13 图

第四章 统计与概率

_ B_ r

1. 实验频率与理论概率的关系只是在实验次数很多时,实验频率接近于理论概念,但实验次数再多,也很难保证实验结果与理论值相等,这就是“随机事件”的特点. 三. 游戏公平吗?

1. 游戏的公平性是指游戏双方各有50%赢的机会,或者游戏多方赢的机会相等.

2. 表示一个事件发生的可能性大小的数叫做该事件的概率.一个事件发生的概率取值在0与1之间. 3. 概率的预测的计算方法:某事件A发生的概率:

P?事件A包含的基本事件的个数

基本事件的总数4. 用分析的办法求事件发生的概率要注意关键性的两点: (1)要弄清楚我们关注的是发生哪个或哪些结果; (2)要弄清楚所有机会均等的结果.

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

顶点在圆上,并且两边都与圆相交的角,叫做圆周角. ※4. 圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半. ※推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; ※推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径; ※四. 确定圆的条件: ※1. 理解确定一个圆必须的具备两个条件: 圆心和半径,圆心决定圆的位置,半径决定圆的大小. 经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上. ※2. 经过三点作圆要分两种情况: (1) 经过同一直线上的三点不能作圆. (2)经过不在同一直线上的三点

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com