当前位置:首页 > 液压与气动技术授课教案设计
课 题 授课班级 能力目标 1、独立分析能力 2、设备拆装、维护教学目标 维修能力 3、根据原理图进行实物连接 4、系统回路设计及其应用 液压系统组成元件 学时 2 知识目标 1、各元件符号识别 2、基本回路的分析 3、复杂回路的分析 4、简单系统的设计及其应用 课 次 上课地点 素质目标 1、岗位精神 2、团队合作意识的培养 3、培养良好的设备维护和保养意识 4、注意开启系统和关闭系统时的注意事项 8 重点:1、执行元件的作用 2、液压缸的分类 3、各连接方式中液压缸参数的计算 教学重点与难点 4、差动连接的工作及使用 5、液压缸的拆装及主要部件的分析 6、液压马达的使用及符号认识 难点:1、液压缸各参数计算 2、液压缸各零部件分析 教学过程 一、液压缸的类型 1、液压缸的分类 液压缸又称为油缸,它是液压系统中的一种重要的执行元件,其功能就讲 授 60 min 是将液压能转变成直线往复式的机械运动。液压缸按其结构不同分为活塞缸,柱塞缸和摆动缸三类。工程机械常用活塞缸。 活塞缸用以实现直线运动,输出推力和速度。活塞缸又可分为双杆式和单杆式两种结构,双杆式指的是活塞的两侧都有伸出杆,单杆式指的是活塞的一侧有伸出杆。活塞缸的固定方式有缸体固定和活塞杆固定两种。如图14所示 主 要 教 学 内 容
图14 双杆式活塞缸 活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。 2、液压缸参数计算 (1)双杆式活塞缸 活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。 如图14(a)所示的为缸筒固定式的双杆活塞缸。它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l时,整个工作台的运动范围为3l,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图14(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。这种安装形式中,工作台的移动范围只等于液压缸有效行程l的两倍,因此占地面积小。进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。 由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。当活塞的直径为D,活塞杆的直径为d,液压缸进、出油腔的压力为p1和p2,输入流量为q时,双杆活塞缸的推力F和速度v为: F?A(p1?p2)??(D2?d2)(p1?p2)/4 v?q4q ?A?(D2?d2)式中A为活塞的有效工作面积。 双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。 (2)单杆式活塞缸 如图15所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。
图15单杆式活塞缸 由于液压缸两腔的有效工作面积不等,因此它在两个方向上的输出推力和速度也不等,其值分别为: F1?(p1A1?p2A2)??[(p1?p2)D2?p2d2)]/4 F2?(p1A1?p2A2)??[(p1?p2)D2?p2d2)]/4 v1?q4qq4q ?v??2A2?(D2?d2)A1?D2由于A1?A2 故F1?F2,v1?v2。如把两个方向上的输出速度v2和v1的比值称为速度比,记作?v,则?v?v2/v1?1/[1?(d/D)2。因此,d?D(?v?1)/?v,若已知D和?v时,可确定d值。 (3)差动缸 单杆活塞缸在其左右两腔都接通高压油时称为:“差动连接”,如图16所示。 图16 差动缸 差动连接缸左右两腔的油液压力相同,但是由于左腔(无杆腔)的有效面积大于右腔(有杆腔)的有效面积,故活塞向右运动,同时使右腔中排出的油液(流量为q')也进入左腔,加大了流入左腔的流量(q?q'),从而也加快了活塞移动的速度。实际上活塞在运动时,由于差动连接时两腔间的管路中有压力损失,所以右腔中油液的压力稍大于左腔油液压力,而这个差值一般都较小,可以忽略不计,则差动连接时活塞推力F3和运动速度v3为: F3?p1(A1?A2)?p1?d2/4
进入无杆腔的流量q1?v3?D24?q?v3?(D2?d2)4 v3?4q/?d2 差动连接时液压缸的推力比非差动连接时小,速度比非差动连接时大,正好利用这一点,可使在不加大油源流量的情况下得到较快的运动速度,这种连接方式被广泛应用于组合机床的液压动力系统和其他机械设备的快速运动中。如果要求机床往返快速相等时,则由式(2.22)和式(2.23)得: 4q4q 即:D?2d ??(D2?d2)?d22、液压缸的拆装 轴向柱塞泵有两种形式,直轴式(斜盘式)和斜轴式(摆缸式),如图14所示为直轴式轴向柱塞泵的工作原理,这种泵主体由缸体1、配油盘2、柱塞3和斜盘4组成。柱塞沿圆周均匀分布在缸体内。斜盘轴线与缸体轴线倾斜一角度,柱塞靠机械装置或在低压油作用下压紧在斜盘上(图中为弹簧),配油盘2和斜盘4固定不转,当原动机通过传动轴使缸体转动时,由于斜盘的作用,迫使柱塞在缸体内作往复运动,并通过配油盘的配油窗口进行吸油和压油。如图17中所示回转方向,当缸体转角在π~2π范围内,柱塞向外伸出,柱塞底部缸孔的密封工作容积增大,通过配油盘的吸油窗口吸油;在0~π范围内,柱塞被斜盘推入缸体,使缸孔容积减小,通过配油盘的压油窗口压油。缸体每转一周,每个柱塞各完成吸、压油一次,如改变斜盘倾角,就能改变柱塞行程的长度,即改变液压泵的排量,改变斜盘倾角方向,就能改变吸油和压油的方向,即成为双向变量泵。 1— 缸体2—配油盘3—柱塞4—斜盘5—传动轴6—弹簧 图17 轴向柱塞泵的工作原理 配油盘上吸油窗口和压油窗口之间的密封区宽度应稍大于柱塞缸体底部通油孔宽度,但不能相差太大,否则会发生困油现象。一般在两配油窗口的两端部开有小三角槽,以减小冲击和噪声。 斜轴式轴向柱塞泵的缸体轴线相对传动轴轴线成一倾角,传动轴端部用万向铰链、连杆与缸体中的每个柱塞相联结,当传动轴转动时,通过万向铰
共分享92篇相关文档