云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 中考数学复习 第二十八章锐角三角函数(专题复习讲义)

中考数学复习 第二十八章锐角三角函数(专题复习讲义)

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 4:28:45

A. B.2 C. D.

3.如图,已知△ABC的三个顶点均在格点上,则cosA的值为 ( )

A. B. C.

D.

4.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为 .

5.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是 .

6.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=2

,则BO= ,∠EBD的大小约为 度 分.(参

考数据:tan 26°34′≈)

7.已知α,β均为锐角,且满足|sinα-|+

=0,则α+β= .

8.如图,在?ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.

(1)求证:AC⊥BD.

(2)若AB=14,cos∠CAB=,求线段OE的长.

9.如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H. (1)求BD·cos∠HBD的值. (2)若∠CBD=∠A,求AB的长.

10.如图,AD是△ABC的中线,tanB=,cosC=,AC=(1)BC的长. (2)sin∠ADC的值.

.求:

2.解直角三角形的实际应用 (1)俯角、仰角问题

利用解直角三角形知识解决实际问题的关键是把实际问题转化为数学问题,并构造直角三角形.解题时要认真审题,读懂题意,弄清仰角、俯角含义,然后再作图解答. 【例1】如图,

为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取

≈1.732,结果精确到1m)

【标准解答】设CE=xm,则由题意可知BE=xm,AE=(x+100)m. 在Rt△AEC中,tan∠CAE=即tan 30°=∴

=,3x=

, (x+100),

≈136.6.∴CD=CE+ED=136.6+1.5=138.1≈138(m).

,

解得x=50+50

答:该建筑物的高度约为138m. (2)方位角、方向角问题

弄清方位角的具体表示方法及对应的角是解题的基础,往往需作垂线构造直角三角形,利用解直角三角形知识解答.参照物不同的方位角,要注意借助两个“十字方向”中的平行线性质解题.

【例2】五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)

【标准解答】作PC⊥AB于C, ∠ACP=∠BCP=90°,∠APC=30°, ∠BPC=45°.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

A. B.2 C. D. 3.如图,已知△ABC的三个顶点均在格点上,则cosA的值为 ( ) A. B. C. D. 4.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为 . 5.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是 . 6.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=2,则BO= ,∠EBD的大小约为 度 分.(参考数据:tan 26°34′≈) 7.已知α,β均为锐角,且满

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com