云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 专题十一三角形(二)

专题十一三角形(二)

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 22:13:26

形的一个外角等于和它不相邻的两个内角的和.

2.(2014?南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,

),则点C的坐标为( )

A(﹣,1) B(﹣1,). . 考点: 全等三角形的判定与性质;坐标与图形性质;正方形的性质.菁优网版权所有 专题: 几何图形问题. 分析: 过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可. 解答: 解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E, ∵四边形OABC是正方形, ∴OA=OC,

C(,1) D(﹣,﹣1) . .

?2010-2015 菁优网

∠AOC=90°, ∴∠COE+∠AOD=90°, 又∵∠OAD+∠AOD=90°, ∴∠OAD=∠COE, 在△AOD和△OCE中, , ∴△AOD≌△OCE(AAS), ∴OE=AD=,CE=OD=1, ∵点C在第二象限, ∴点C的坐标为(﹣,1). 故选:A. 点评: 本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.

3.(2014?台州)如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是( )

?2010-2015 菁优网

A45° B50° C60° D不确定 . . . 考点: 全等三角形的判定与性质;正方形的性质.菁优网版权所有 专题: 几何图形问题. 分析: 过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题. 解答: 解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°, ∵E是BF的垂直平分线EM上的点, ∴EF=EB, ∵E是∠BCD角平分线上一点, ∴E到BC和CD的距离相等,即BH=EI,

. ?2010-2015 菁优网

Rt△BHE和Rt△EIF中,, ∴Rt△BHE≌Rt△EIF(HL), ∴∠HBE=∠IEF, ∵∠HBE+∠HEB=90°, ∴∠IEF+∠HEB=90°, ∴∠BEF=90°, ∵BE=EF, ∴∠EBF=∠EFB=45°. 故选:A. 点评: 本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,全等三角形对应角相等的性质.

4.(2014?遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是(

A3 B4 C6 D5 . . . . 考点: 角平分线的性质.菁优网版权所有 专题: 几何图形问题. 分析: 过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.

?2010-2015 菁优网

搜索更多关于: 专题十一三角形(二) 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

形的一个外角等于和它不相邻的两个内角的和. 2.(2014?南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为( ) A(﹣,1) B(﹣1,). . 考点: 全等三角形的判定与性质;坐标与图形性质;正方形的性质.菁优网版权所有 专题: 几何图形问题. 分析: 过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可. 解答: 解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E, ∵四边形OABC是正方形, ∴OA=OC, C(,1) D(﹣,﹣1) . .

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com