云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高考数学常用公式及结论120条

高考数学常用公式及结论120条

  • 62 次阅读
  • 3 次下载
  • 2025/5/31 16:48:25

109.证明直线与直线的平行的思考途径

(1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.

110.证明直线与平面的平行的思考途径

(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.

111.证明平面与平面平行的思考途径

(1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.

112.证明直线与直线的垂直的思考途径

(1)转化为相交垂直; (2)转化为线面垂直;

(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直.

113.证明直线与平面垂直的思考途径

(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直.

114.证明平面与平面的垂直的思考途径

(1)转化为判断二面角是直二面角; (2)转化为线面垂直.

115.空间向量的加法与数乘向量运算的运算律

(1)加法交换律:a+b=b+a.

(2)加法结合律:(a+b)+c=a+(b+c). (3)数乘分配律:λ(a+b)=λa+λb.

116.平面向量加法的平行四边形法则向空间的推广

始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.

117.共线向量定理

对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.

三点共线

118.共面向量定理

向量p与两个不共线的向量a、b共面的推论 空间一点P位于平面MAB内的或对空间任一定点O,有序实数对

119.对空间任一点则当

和不共线的三点A、B、C,满足

,总有P、A、B、C四点共面;当

,使

存在实数对

,使,使.

共线且

不共线

.

不共线.

存在有序实数对

(时,若

),

平面ABC,

时,对于空间任一点

则P、A、B、C四点共面;若

四点共面

平面ABC,则P、A、B、C四点不共面. 与(

共面

平面ABC).

120.空间向量基本定理

如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.

推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使

.

搜索更多关于: 高考数学常用公式及结论120条 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com