ǰλãҳ > 李凡长版 组合数学课后习题答案 习题3 - 百度文库
13. һƽϻһԲ,ȻһһػnԲֱཻ.r
1ʱ,rֱֻǰr1ֱ֮һԲཻ.rżʱ,rֱǰr1ֱ߶Բཻ.3ֱԲڹ,nֱ߰ԲָɶٸصIJ֣
⣺rʱֻԭr1ֱ֮һཻ˶֣ rżʱԭr1ཻ˶r㣻
f(n)=f(n-1)+2 nΪ f(n)=f(n-1)+n nΪż
14. 1nȻѡȡkͬҲڵ,ѡȡķλ
f(n,k).
1) f(n,k)ĵƹϵ 2) ùɷf(n,k)
3) 1nڵ,ڴ˼ٶ´1nȻѡȡk
ͬҲڵķλg(n,k),f(n,k)g(n,k).
⣺1ࣺѡnΪf(n-2,k-1)ѡnΪf(n-1,k). f(n,k)=f(n-2,k-1)+f(n-1,k). 2)f(n,k)=C(n-k+1,k).
3)f(n,k)=C(n-k+1,k-1)*n/k.
15. 1nȻѡȡ֮rk
1) ĵƹϵ
?n?rk?r?2) ֤fr(n,k)???,n?r?k(r?1)
k??⣺ɽתΪӦ01⡣nλ011
nλ1Ӧѡȡ0ӦIJȡһ01ӦһѡȡҲӦͬ벻ͬĺӵķ
k???????????10...010...01......10...01??? rrr?k?1?n?k?r(k?1)?1??n?r(k?1)?fr(n,k)?????? n?k?r(k?1)k????11??Fn?116. ֤?????F10???nnFn?
?Fn?1?֤ѧɷ֤
11?ұ=?11? 1) n=1ʱ= ??????10??10?11??Fk?12) n=kʱʽ?????F10???kkFk??. Fk?1?n=k+1ʱ
21
?Fk?1Fk??11??Fk?1?Fk?11?????????F?F?10?k?1??10??k?Fk?Fk?11)2ɵõʽ
nk?1Fk??Fk?2???Fk??Fk?1Fk?1?? Fk?n?1?n?k??n?k?17. n?0,an????,bn???2k?1?,Fibonacciʾanbn. 2kk?0?k?0???⣺
an?1?n?k?1?n?1??n?k??n?k??n?n?k??2n?1?n?n?k?1??????????????? ??????????2k?k?0??2k??2k?1??k?0?2k??2n?2?k?0?2k?1?k?0?n?1
?an?bn?1
ͬɵbn?1?an?bn
ɴ˿ɵеɺΪA(x)?1?xx?3x?12B(x)?11?xx,B(x)?x1?xA(x)
ɵA(x)?,B(x)?x?3x?12
Fibonacci֪f(n)=f(n-1)+f(n-2)ɺΪ
F(x)?11?x?x?2
?P(x)??f(2n)x,Q(x)??f(2n?1)xnɵ
nn?0n?1P(x)?1?xx2?3x?1,Q(x)?xx2?3x?1
anf(2n), bnf(2n-1).
18. ijnԪǮ,ÿһƷ,ÿƷƷֺܵ,һԪļƷ,ԪǮƷ,ԪǮıƷ.,nԪǮжֲͬķʽ
⣺f(n)ʾnԪǮķ
f(n)=f(n-1)+2f(n-2) f(1)=1,f(2)=3. 19. ֤һnдɲͬFibonacciĺ. ֤nԱʾΪFibonacciеͣ n=?SiFi,Si=(0,1),i=1,2,?m;SiSi+1=0,i=1,2,?,m-1.
i?2m22
ѧɷ֤ 1) n=1=f(0)=f(1),
2) n=kʱʽn=k+1Ϊ1ҲFibonacci 3) 1)2֤ʽ
20. ֤nҶӵȫĸΪCatalan. ֤PnʾnҶӰλõķ, Pn=P1Pn-1+P2Pn-2+?+Pn-1P1,P1=P2=1. ȻPk=Ck+1,k=1,2,?,n.
21. ֤ӣ0,0㵽n,nij˵ⲻӴֱy=x·Ϊ
2h(n),,h(n)ΪCatalan.
֤ɻΪ֣һִӣ00nn·ȫy=xϷһȫ·ڶԳԣֻҪһּɡ
O㣨00A㣨nnO'㣨01A'㣨nn1
OOAOAϷĵ㵽A·ӦһO'O'A'㼰O'A'Ϸĵ㵽A'·ǺȻġ
O';OAϵĵ㵽A'·ΪO'ԽO'A'A'·ʶӦһOԽOAA·
ԣOOAOAϷĵA·ڴO'A'·ȥO';OAϵĵ㵽A'·
1?2n??2n??2n????n??n?1?n?1?n? ??????2n?ܵ·Ϊ2? ??n?1?n? 23
92ƪĵ