云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2018-2019学年福建省厦门市初二年期末质量检测数学试题

2018-2019学年福建省厦门市初二年期末质量检测数学试题

  • 62 次阅读
  • 3 次下载
  • 2025/5/5 12:59:57

解:以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得

该直角三角形的另两条边的长都是正整数.

理由如下:

对于一组数:m2-1,2m,m2+1(m≥2,且m为整数). 7分 因为(m2-1) 2+ (2m) 2=m4+2m2+1=(m2+1) 2

所以若一个三角形三边长分别为m2-1,2m,m2+1(m≥2,且m为整数),则该三

角形为直角三角形. 因为当m≥2,且m为整数时,2m表示任意一个大于2的偶数,m2-1,m2+1均为正整数,

所以以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数. ··· 9分

23.(本题满分10分)

(1)(本小题满分3分)

解:建议不合理. ··················· 1分 理由如下:

根据题意可知,10个司机中至少要留出3人做为机动司机,所以最多只能租7辆车.

··· 3分

(2)(本小题满分7分)

5

解:设共租m(m为正整数)辆车,依题意得5≤m≤8,即6≤m≤8.

7

由(1)得,m≤7. 所以6≤m≤7.

即总租车数为6辆或7辆. ················ 5分

设车队租的5座车有x(x为非负整数)辆,一辆5座车的日租金为a元,车队日租金为y元, ① 当总租车数为6辆时,

y1=ax+(a+300)(6-x)=-300x+6a+1800. ···· 6分

由x≤6,且5x+7(6-x)≥40,可得x≤1. 又因为x为非负整数,

所以x=1.此时y1=6a+1500. ·············· 7分 此时的租车方案是:租1辆5座越野车,5辆7座越野车. ② 当总租车数为7辆时,

y2=ax+(a+300)(7-x)=-300x+7a+2100. ···· 8分

9

由x≤7,且5x+7(7-x)≥40,可得x≤.

2

又因为x为非负整数,所以x≤4.

因为-300<0,

所以y随x的增大而减小,

所以当x=4时,y2有最小值7a+900.··········· 9分

此时的租车方案是:租4辆5座越野车,3辆7座越野车.

当y1=y2即a=600时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车,或租4辆5座越野车,3辆7座越野车;

当y1<y2即a>600时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车; 当y1>y2即a<600时,日租金最少的方案是:租4辆5座越野车,3辆7座越野车.

10分

24.(本题满分11分)

A(1)(本小题满分5分)

证明: 如图5,平行四边形ABCD中,

∵ AD∥BC, ·············· 1分 ∴ ∠CBE=∠AEB. ··········· 2分

B ∵ BE平分∠ABC, 图5 ∴ ∠CBE=∠ABE, ··········· 3分 ∴ ∠AEB=∠ABE

∴ AB=AE. ·················· 4分 又∵ AD=2AE, ∴ AD=2AB. ·················· 5分 (2)(本小题满分6分)

1+3

解:存在.当AH⊥DF且DE=时,四边形ABFH是菱形. · 7分

2

EA 理由如下:

如图6,过点A作AH⊥DF于H,

在平行四边形ABCD中,AD∥BC,∠ABC=∠ADC=60°, 在Rt△AHD中,∠AHD=90°,∠ADH=60°

B∴ ∠DAH=30°

1

∴ DH=AD=1,

2FEDCDHC AH=22-12=3. ················ 8分

∴ 在Rt△DEF中,∠EFD=30°, ∴ DF=2DE=1+3,

∴ FH=DF-DH=1+3-1=3, ··········· 9分 ∴ FH=AB.

又∵ 在平行四边形ABCD中,AB∥DC,点F在DC的延长线上, ∴ FH∥AB,

∴ 四边形ABFH是平行四边形. ············ 10分 ∵ AH=AB,

∴ 四边形ABFH是菱形. ··············· 11分 25.(本题满分14分)

(1)(本小题满分3分)

解:把C(a,2a-3)代入y=x,得

a=2a-3, ··················· 1分

解得a=3. ··················· 2分 所以点C的坐标是(3,3). ············ 3分

(2)(本小题满分4分)

解:点C在直线y=x(x>0)上,不妨设点C的坐标为(t,t).

如图7,过点C作CE⊥y轴,垂足为点E,

∴ 在Rt△OCE中,∠OEC=90°,OE=CE=t,

∴ ∠EOC=∠ECO =45°. ············ 4分 又∵ ∠BCO=105°,

∴ ∠BCE=∠BCO-∠ECO =60°, ∴ 在Rt△BEC中,∠EBC =30°,

图6

yBEOCx图7

∴ BC=2CE=2t, ∴ BE=BC2-CE2 =3t. ············ 5分 又∵ BE=BO-OE ,且点B(0,3+3),

∴ 3t=3+3-t, ·············· 6分 (3+1)t=3(3+1)

解得t=3.

∴ BC=23. ················· 7分

(3)(本小题满分7分) y 解:∵A(m,n) ,B(0,b) ,且0<m<n<b,

EB ∴ 点A在直线y=x(x>0)上方.

A ∵ AM⊥x轴于点M,

D 且AM交直线y=x(x>0)于点D, A(m,n) , CF ∴ 点D的坐标为(m,m),AM=n. OxM ∴ 在Rt△OMD中,∠OMD=90°,OM=DM=m,

图8 ∴ ∠ODM=45°,

∵ AM=n,AD=2,

∴ DM=AM-AD,即 m=n-2. ········· 8分 如图8,当点C在点D左侧时,

过点B,点C分别作BE⊥AM,CF⊥AM,垂足分别为点E,点F,

∴ E(m,b),BE=m,∠BEA=∠AFC=90°. ∵ BA⊥CA,

∴ ∠BAC=90°,∠BAE+∠CAF=90°. ∵ Rt△BEA中,∠BAE+∠ABE=90°,

∴ ∠CAF=∠ABE. ··············· 9分 又∵ BA=CA,

∴ △ABE≌△CAF. ··············· 10分 ∴ BE=AF=m. ∵ DF=AF-AD,且BE=AF,

∴ DF=BE-AD=m-2.

y 在Rt△DCF中,∠CDF=∠DCF =45°, ∴ DF=CF=m-2, BE ∴ CD=DF2+CF2=2 DF =2 ( m-2) ···· 11分 FCA =2m-2

D =2(n-2)-2

xOM =2n-4. ········· 12分 ∵ 1≤CD≤2,即1≤2n-4≤2,

图9 5

∴ 2≤n≤32. ··············· 13分 2

如图9,当点C在点D右侧时,

同理可求,DF=m+2,CD=2m+2, 由1≤CD≤2,

1

求得-2≤m≤0,不符合题意.

2

5

综上,2≤n≤32. ·············· 14分

2

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

解:以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得 该直角三角形的另两条边的长都是正整数. 理由如下: 对于一组数:m2-1,2m,m2+1(m≥2,且m为整数). 7分 因为(m2-1) 2+ (2m) 2=m4+2m2+1=(m2+1) 2 所以若一个三角形三边长分别为m2-1,2m,m2+1(m≥2,且m为整数),则该三角形为直角三角形. 因为当m≥2,且m为整数时,2m表示任意一个大于2的偶数,m2-1,m2+1均为正整数, 所以以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com