当前位置:首页 > 高中数学复习学(教)案(第36讲)绝对值不等式
题目 第六章不等式绝对值不等式 高考要求
1理解不等式│a│-│b│≤│a+b│≤│a│+│b│ 2.掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; 知识点归纳
1.解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方 2.注意利用三角不等式证明含有绝对值的问题
||a|─|b||?|a+b|?|a|+|b|;||a|─|b||?|a─b|?|a|+|b|;并指出等号条件 3.(1)|f(x)| (2)|f(x)|>g(x)?f(x)>g(x)或f(x)<─g(x)(无论g(x)是否为正) (3)含绝对值的不等式性质(双向不等式) a?b?a?b?a?b 左边在ab?0(?0)时取得等号,右边在ab?0(?0)时取得等号 题型讲解 例1 解不等式5x?1?2?x 分析:不等式x?a?x?a或x??a,x?a??a?x?a(其中a?0)可以推广为任意a?R都成立,且a为代数式也成立 解:原不等式又化为 5x?1?2?x或5x?1??(2?x) 13解之得x?或x??64∴原不等式的解集为{xx?1或x??3} 64点评:可利用f(x)?g(x)?f(x)?g(x)或f(x)??g(x),f(x)?g(x)??g(x)?f(x)?g(x) 去掉绝对值符号 例2 求证:不等式a?b?a?b 1?a?b1?a1?b证法一:?1?当a?b?0时,显然成立; ?2?当a?b?0时, a?b?1?a?b11?1a?b?11a?ba?babab?????11?a?b1?a?b1?a?b1?a1?b??原不等式成立. aa?m证法二:利用分式不等式性质:若0?a?b,m?0,则? bb?m?1?当a?b?0时,显然成立; ?2?当a?b?0时,?a?b?a?b?综上(1),(2)得a?b1?a?b?a1?a?b1?ba?b1?a?b?a?b1?a?b?a1?a?b1?b 例3 若f(x)?1?x2,且a,b为互异实数,求证:f(a)?f(b)?a?b 分析1:欲证f(a)?f(b)?a?b成立,只要证f(a)?f(b)a?b?1成立. f(a)?f(b)证法一:??a?ba2?1?b2?1a?b?a2?1?b2?1?a2?1?b2?1?a?b(a2?1?b2?1) ?a2?b2a?b(a?1?b?1)22?a?ba?1?b?122?a?ba?b?1?a?b? ?f(a)?f(b)?a?b成立. 分析2:直接把f(a)?a2?1,f(b)?b2?1代入f(a)?f(b),进行分子有理化,也易得证. 证法二:f(a)?f(b)?a2?1?b2?1??a2?1???b2?1?2a?1?b?12?a2?b2a?b ?所以,原命题得证 ?a?b??a?b?a?b?a?b 证法三:欲证f(a)?f(b)?a?b成立,只要证a2?1?b2?1?a?b 只要证1?a2?1?b2?2现证?a2?1??b2?1??a2?2ab?b2 ?a2?1??b2?1??1?ab 当1?ab?0时,显然成立,当1?ab?0时,只要证1?a2?b2?a2b2?1?2ab?a2b2 即a2?b2?2ab,而此式成立,?原不等式成立.证法四:欲证f(a)?f(b)?a?b成立,只要证a2?1?b2?1?a?b只要证1?a2?1?b2?2?a2?1??b2?1??a2?2ab?b2 只要证明?a2?1??b2?1??1?ab ?(a2?1)(b2?1)?1?a2?b2?a2b2?1?2ab?a2b2??a?b?(a2?1)(b2?1)?1?ab,?原不等式成立 例4 设f(x)?x2?bx?c(b,c为常数),方程f(x)?x?0的两个实根为x1,x2, ?1?ab?2?1?ab且满足x1?0,x2?x1?1. ?1?求证:b2?2(b?2c);?2?设0?t?x1,比较f(t)与x1的大小;?3?若当x???1,1?时,对任意的x都有 f(x)?1,求证:1?b?2.2解:?1??方程f(x)?x?0的两根为x1,x2,因而有?x2?x1??b2?2b?1?4c,又x2?x1?1,?b2?2b?1?4c?1,?b2?2(b?2c). ?2??x1是方程f(x)?x?0的根,?x1?f?x1?, ?f?t??x1?f?t??f?x1??(t?x1)(t?x1?b)?(t?x1)(t?1?x2), ?x1?x2?1?b,?0?t?x1,?t?x1?0,又x2?x1?1即x1?1?x2?0, ?t?1?x2?x1?1?x2?0,故f?t??x1?0 ?3??x???1,1?时恒有f(x)?1, ?f(0)?c?1,f(1)?1?b?c?1, 从而1?b?1?b?c?c?1?b?c??c?1?b?c?c?1?1?2 2f(x)?例5 已知a?1,函数f(x)?ax?x?a(?1?x?1),求证:5 4证明:a?1,x?1 ?f(x)?ax2?x?a ?a(x2?1)?x?a(x2?1)?x?1?x2?x?1?x?x?例6 求证:(a4?b4)(?a2?b2)?a3?b3 25 4(a,b),n?(a,b)证明:令m? ?m?a4?b4n?a2?b2,m?n?a3?b3 ?m?n?mn)?(a4?b4)(?a2?b2)?a3?b3 例7 a, b ? R 证明|a + b|-|a-b| < 2|b| 22?|(a?b)?(a?b)|?|a?b|?|a?b| ?|a?b|?|a?b|?|2b|?2|b| 例8 解不等式||x+3|─|x─3||>3 解法一:分区间去绝对值(零点分段法): ∵||x+3|─|x─3||>3 ?x??3∴(1)??x<─3; |?(x?3)?(x?3)|?3?(2)???3?x?3?3/2 ?|(x?3)?(x?3)|?3
共分享92篇相关文档