当前位置:首页 > 苏科版七年级数学下册解一元一次不等式教案
一元一次不等式
1、教材分析 课程名称:不等式与不等式组的解法 教学内容和地位:学习不等式与不等式组的解法对于培养学生分析问题、解决问题的能力,体会数学的应用价值,以及学生的后续学习都具有重要意义。 教学重点:解一元一次不等式或一元一次不等式组 教学难点:选择恰当的方法解一元一次不等式或一元一次不等式组 2、课时规划 3、教学目标分析 课时:3课时 1、掌握一元一次不等式或一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。 2、让学生经历知识的拓展过程,会应用数轴确定一元一次不等式组的解集,感受并掌握数形结合思想。 一:复习上次课重点知识。 二:梳理本节重要知识点。 三:例题精讲。 四:练习。 五:重难点,易错点,常见题型和方法。 六:课堂总结。 必讲知识点 一:复习上次课重点知识。 二:梳理本节重要知识点。 知识点一:不等式的概念 1、不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。 2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4、求不等式的解集的过程,叫做解不等式。 5、用数轴表示不等式的方法. 知识点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 知识点三、一元一次不等式 4、教学思路 5、教学过程设计
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1 知识点四、一元一次不等式组 1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 6、不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。 7、不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 8、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设a>b)不等式组的解集 数轴表示 1.(同大型,同大取大)x>a 2.(同小型,同小取小) x
才从“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。
步骤:
解:解不等式(1)得x>
(1)分别解不等式组的每一
解不等式(2)得x≤4 个不等式
(2)求组的解集。
∴
(借助数轴找公共部分) (3)写出不等式组解集
(利用数轴确定不等式组的解集) (4)将解集标在数轴上
∴ 原不等式组的解集为 ∴ 例2.解不等式组 解:解不等式(1)得x>-1, 解不等式(2)得x≤1, 解不等式(3)得x<2, ∴ ∵在数轴上表示出各个解为: ∴原不等式组解集为-1 注意:借助数轴找公共解时,应选图中阴影部分,解集应用小于号连接,由小到大排列,解集不包括-1而包括1在内,找公共解的图为图(1),若标出解集应按图(2)来画。 例3.解不等式组 解:解不等式(1)得x>-1, 解不等式(2), ∵|x|≤5, ∴-5≤x≤5, ∴ 将(3)(4)解在数轴上表示出来如图, ∴ 原不等式组解集为-1 例4.求不等式组的正整数解。 步骤: 解:解不等式3x-2>4x-5得:x<3, 1、先求出不等式组的解集。 解不等式≤1得x≤2, 2、在解集中找出它所要求的特殊解, ∴ 正整数解。 ∴原不等式组解集为x≤2, ∴这个不等式组的正整数解为x=1或x=2 例5,m为何整数时,方程组 的解是非负数? 分析:本题综合性较强,注意审题,理解方程组解为非负数概念,即。先解方 程组用m的代数式表示x, y, 再运用“转化思想”,依据方程组的解集为非负数的条件列出不等式组寻求m的取值范围,最后切勿忘记确定m的整数值。 解:解方程组得 ∵方程组的解是非负数,∴ 即
共分享92篇相关文档