云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版八年级数学下册第一章三角形的证明第一节等腰三角形练习试题(无答案)

北师大版八年级数学下册第一章三角形的证明第一节等腰三角形练习试题(无答案)

  • 62 次阅读
  • 3 次下载
  • 2025/7/13 8:16:59

全等三角形和等腰三角形的性质

全等三角形的性质和判定

1.如图,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为( )

A.4

B.5

C.6

D.不能确定

2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )

A.∠B=∠E

B.BC∥EF

C.∠BCA=∠F

D.∠A=∠EDF

3.如图,△ABC≌△DBE,∠DBC=150°,∠ABD=40°,则∠ABE的度数是( )

A.70°

B.65°

C.60°

D.55°

4.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.若AC=5,则DF= .

5.如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.

6.如图,已知点B,C,D,E 在同一直线上,且AB=AE,AC=AD,BD=CE. 求证:△ABC≌△AED.

等腰三角形的性质

7.若等腰三角形的顶角为70°,则它的底角度数为( ) A.45°

B.55°

C.65

D.70°

8.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )

A.18°

B.24°

C.30°

D.36°

9.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若AB=13,AD=12,则BC的长为( )

A.5

B.10

C.20

D.24

10.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=20°,则∠C的度数是( )

A.20° 练习

1.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )

B.45°

C.60°

D.70°

A.40°

B.36°

C.30°

D.25°

2.如图,在△ABC中,点D、E、F分别是BC、AB、AC上的点,若AB=AC,BE=CD,BD=CF,∠EDF=54°,则∠A的度数为( )

A.54°

B.72°

C.80°

D.108°

3.如果一个等腰三角形一腰上的高与腰的夹角是30°,则它的顶角度数是 .

4.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F. (1)证明:∠CAE=∠CBF; (2)证明:AE=BF.

5.(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;

(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE= ; (3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

全等三角形和等腰三角形的性质 全等三角形的性质和判定 1.如图,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为( ) A.4 B.5 C.6 D.不能确定 2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( ) A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF 3.如图,△ABC≌△DBE,∠DBC=150°,∠ABD=40°,则∠ABE的度数是( ) A.70° B.65° C.60° D.55°

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com