当前位置:首页 > 初中数学-几何证明经典试题(含答案)
初中几何证明题
已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF
A
已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、
CC1、DD1的中点.
A A2 A1 D1 B1 C1 D2 D B C A P D D G O F B
C E 求证:四边形A2B2C2D2是正方形.
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC
的延长线交MN于E、F. 求证:∠DEN=∠F.
N
A D C E F M B
经典题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
B O · H E M D C A
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.(初二)
M
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MNE 于P、Q.
C A Q 求证:AP=AQ.(初二) M · N P · O B P A Q N C B O · G E D
D
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.(初二)
E D
G C P A Q B F
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
F
B
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
F
B C E
A D C E D A
共分享92篇相关文档