当前位置:首页 > 光载无线通信ROF-姜希振
图1.2 ROF系统在悉尼奥运会上的应用
在日本,ROF已经应用在了现有的蜂窝系统——个人数字通信(PDC,personal digital communication)系统和宽带码分多址接入 (WCDMA,Wideband Code Division Multiple Access) 系统中。NTT DoCoMo作为日本蜂窝系统运营商之一,将ROF技术运用于微蜂窝和微微蜂窝的信号传输微波链路中。它将很小的基站(接入单元)设置在室内天花板上,然后通过光纤与一个主基站连接在一起。
6
第二章 ROF技术的特点
本章简要介绍一些ROF技术和传统的无线传输系统相比所具有的优点和存在的一些问题。
2.1 ROF技术的优点
2.1.1 输距离长 、衰减损耗低
高频微波信号的传输,无论是在自由空间还是在固态介质传输线上,具有很多潜在问题,成本也较昂贵。自由空间里,随着频率的升高,由吸收和反射引入的损耗也加大[1]。固态介质传输线中,阻抗随着频率的升高而增大,带来了很大的损耗。因此,远距离分布高频射频信号需要很昂贵的再生设备。对于毫米波而言,它们在传输线上的分布传播即使短距离也是很难实现的。目前已商用的解决办法,就是把基带信号或者中频调制信号从交 换中心(headend)分布传输到BTS基站,基带或者中频信号在基站端上变频到需要的微波或者毫米波,微波放大,然后经由天线发射,如图2.1a/b所示的结构,只不过传输媒介是电缆而非光纤。由于在各个基站端上变频处理的需要,就需要高性能的本地振荡器,这个又导致基站端复杂的结构和较高的性能需求。另一方面,因为光纤具有较小的损耗,ROF技术既可以实现毫米波分布的低损耗,还可以简化RAUs的结构。
a 基带网络
b 经由光纤的中频信号传输
图2.1 ROF系统概念的理论图
目前实用的单模光纤(SMFs)基本都是石英材料的,他们在1550nm和1310nm窗口的损
7
耗分别低于0.2dB/km和0.5dB/km,比已知的其他通信线路的损耗都低的多,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长的多。如果今后采用非石英光纤,并工作在超长波长(>2υm),光纤的理论损耗系数可以下降到10-3~10-5dB/km,此时光纤通信的中继距离可大数千,甚至数万公里[2]。
2.1.2 光纤的容量大
光纤可以提供巨大的带宽。光纤通信主要又三个低损耗窗口,分别是850nm,1310nm,
1550nm波长。对于单根单模光纤来说,三个窗口一共可以提供高达50THz的带宽。然而,目前广泛商用的系统仅仅利用了其中的一小部分,大概1.6THz。人们还在不断的研究如何拓展单根光纤的传输能力,通过包括开发低色散光纤、为1550nm专用的掺饵光放大器、混和利用高级光时分复用(OTDM)和密集光波分复用技术(DWDM)等。
除了传输微波信号的较高性能,光纤的高带宽还有其他的优点。高光带宽可以实现在电系统中很难甚至不可能实现的高速信号处理,也就是说,一些必需的微波信号处理,比如滤波,混频,上/下变频都可以在光域中实现。在光域进行信号处理就可以利用较便宜低带宽的光器件,象是激光二极管和调制器,还可以处理高带宽的信号。
2.1.3 光纤体积小、重量轻、安装维护简便
在ROF系统中,复杂而昂贵的设备都在headend端,简化了RAUS的结构。比如系统删减了RAU端的本振和相关设备,而仅仅需要光电探测器,射频放大器和天线来发射信号,调制器和交换设备也都放置在headend端,这些设备由几个RAUS共用。这种结构可以使RAUS更加轻便小巧,有效的降低了系统安装和维护成本,这点对于毫米波系统来说是极其重要的,因为毫米波系统需要很多的RAUS。在那些RAUS不是很容易接近的应用来说,维护成本是运营成本的主要部分[3]。较小的RAUS还可以降低对环境的污染和影响.
2.1.4 可以提供多种通信业务
ROF满足了系统级操作的灵活性。依赖微波产生技术,ROF分布系统可以实现信号格式的透明化。强度调制-直接检测 ( IM-DD) 技术可以被设计使用成为一个线性的系统,
8
也就是通明(transparent)系统。它可以通过混和利用低损耗单模光纤和预调制RF载波技术来实现。这样的ROF网络可以被用来分布支持多操作、多服务的通信业务,这又可以带来经济成本上的节约[3]。
2.1.5 动态资源配置
由于交换机、调制器和其他射频微波功能器件都放在中心局端,这就使得资源配置可
以动态化。例如,一个支持GSM系统业务的ROF分布系统,更多的资源和容量可以配置到某一个特定的地点,比如消费高峰时段的商场,然后在高峰期后再配置到其他地区,比如傍晚的居民居住区。随着需求的增大,这些功能可以通过WMD技术分配配置光波实现。根据业务需求配置通信容量可以克服只能固定永久性配置容量的需求,毕竟这种固定性配置在业务需求变化频繁的大型区域是一种很大的资源浪费[3]。而且,因为中心局端的存在,更加简易巩固了其他信号处理功能,比如移动性切换功能和宏观复用传输等。
2.1.6 抗电磁干扰能力强
良好抗电磁干扰性能对光纤通信,尤其微波通信来说是极具吸引力的一个特性。而采用光的方式在光纤中传输微波信号恰恰实现了这个功能。光导纤维是石英玻璃丝,是一种非导电介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。因为这个特性,光缆在毫米波的短距离链接中都被较大范围的利用。与抗电磁干扰相关的,光纤通信还有良好的抗窃听性,可以保护隐私和提供更好的安全性。结构简单、装备减少的RAUS能够使电能消耗大大降低。基本上所有复杂的设备都放置在中心局端。某些应用上,RUAS还可以是无源操作的。由于RAU端功率消耗的降低,可以考虑把RAUS放置在遥远没有电力供应的地点。
2.2 ROF技术的局限
动态范围对于象GSM这样的蜂窝式移动通信系统来说是一个非常重要的因素,因为从MU到基站的信号功率变化很大,同一个蜂窝内,距离基站比较近的MU发射的射频功率比基站接受到的几公里外MU发射的信号功率大很多。由于ROF技术包含了模拟调制和光探
9
共分享92篇相关文档