当前位置:首页 > 2018年哈尔滨市中考数学试卷含答案解析
验即可得到分式方程的解. 【解答】解:去分母得:x+3=4x, 解得:x=1,
经检验x=1是分式方程的解, 故选:D.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为( )
A. B.2 C.5 D.10
【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可. 【解答】解:∵四边形ABCD是菱形, ∴AC⊥BD,AO=CO,OB=OD, ∴∠AOB=90°, ∵BD=8, ∴OB=4, ∵tan∠ABD==∴AO=3,
在Rt△AOB中,由勾股定理得:AB=故选:C.
【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.
9.(3.00分)已知反比例函数y=A.﹣1 B.0
C.1
D.2
的图象经过点(1,1),则k的值为( )
=
=5,
,
【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.
【解答】解:∵反比例函数y=∴代入得:2k﹣3=1×1, 解得:k=2, 故选:D.
的图象经过点(1,1),
【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.
10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( )
A.= B.= C.= D.=
【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出
=
=
,此题得解.
【解答】解:∵GE∥BD,GF∥AC, ∴△AEG∽△ABD,△DFG∽△DCA, ∴∴
==
,=
=.
,
故选:D.
【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出=
二、填空题(每小题3分,共计30分)
11.(3.00分)将数920000000科学记数法表示为 9.2×108 .
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点
=
是解题的关键.
移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:920000000用科学记数法表示为9.2×108, 故答案为;9.2×108
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.(3.00分)函数y=
中,自变量x的取值范围是 x≠4 .
【分析】根据分式分母不为0列出不等式,解不等式即可. 【解答】解:由题意得,x﹣4≠0, 解得,x≠4, 故答案为:x≠4.
【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.
13.(3.00分)把多项式x3﹣25x分解因式的结果是 x(x+5)(x﹣5) 【分析】首先提取公因式x,再利用平方差公式分解因式即可. 【解答】解:x3﹣25x =x(x2﹣25) =x(x+5)(x﹣5).
故答案为:x(x+5)(x﹣5).
【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
14.(3.00分)不等式组
的解集为 3≤x<4 .
【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【解答】解:
∵解不等式①得:x≥3, 解不等式②得:x<4,
∴不等式组的解集为3≤x<4,
故答案为;3≤x<4.
【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.
15.(3.00分)计算6【分析】首先化简【解答】解:原式=6故答案为:4
.
﹣10
的结果是 4 .
,然后再合并同类二次根式即可. ﹣10×
=6
﹣2
=4
,
【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为 (﹣2,4) . 【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标. 【解答】解:∵y=2(x+2)2+4, ∴该抛物线的顶点坐标是(﹣2,4), 故答案为:(﹣2,4).
【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.
17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 .
【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.
【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 故骰子向上的一面出现的点数是3的倍数的概率是:=. 故答案为:.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结
共分享92篇相关文档