云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 数量关系—插板法的经典应用

数量关系—插板法的经典应用

  • 62 次阅读
  • 3 次下载
  • 2025/7/14 21:57:07

某学校四、五、六年级组织了一场文艺演出,共演18个节目,如果每个年级至少演出4个节目,那么,这三个年级演出节目数的所有不同情况共有多少种?

【解析】、我们先把18个节目每个年级分配3个节目,这样三个班就都还差一个节目,总的还剩下9个节目,按照插板法来解答。9个节目排成一排共计8个间隔。分别选取任意2个间隔就可以分成3份;故答案为C8取2=28.

插板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1) 这n个元素必须互不相异 (2) 所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明

把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?

问题的题干满足 条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用

==================================================

=

a 凑元素插板法 (有些题目满足条件(1),不满足条件(2),此时可适用此方法)

例1 :把10个相同的小球放入3个不同的箱子,问有几种情况? 3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入

1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况? 显然就是 c12 2=66

-------------------------------------------------

例2: 把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况? 我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法? c8 2=28

================================================== b 添板插板法

例3:把10个相同小球放入3个不同的箱子,问有几种情况? -o - o - o - o - o - o - o - o - o - o - o表示10个小球,-表示空位

11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,

第2组始终不能取空

此时 若在 第11个空位后加入第12块板,设取到该板时,第二组取球为空

则每一组都可能取球为空 c12 2=66 --------------------------------------------------------

例4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?

因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab 显然a+b<=9 ,且a不为0

1 -1- 1 -1 -1 -1 -1 -1 -1 - - 1代表9个1,-代表10个空位

我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有 c10 2=45 -----------------------------------------------------------

例5:有一类自然数,从第四个数字开始,每个数字都恰好是它前面三个数字之和,直至不能再写为止,如2349,1427等等,这类数共有几个?

类似的,某数的前三位为abc,a+b+c<=9,a不为0 1 -1- 1 -1 -1 -1 -1 -1 -1 - - -

在9个空位种插如3板,分成4组,第一组取a个1,第二组取b个1,第三组取c个1,由于第二,第三组都不能取到空,所以添加2块板

设取到第10个板时,第二组取空,即b=0;取到第11个板时,第三组取空,即c=0。所以一共有c11 3=165

============================================ c 选板法

例6: 有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法?

o - o - o - o - o - o - o - o - o - o o代表10个糖,-代表9块板 10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉 这样一共就是 2^9= 512啦

============================================= d 分类插板

例7: 小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?

此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论 最多吃5天,最少吃1天

1: 吃1天或是5天,各一种吃法 一共2种情况

2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2

搜索更多关于: 数量关系—插板法的经典应用 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

某学校四、五、六年级组织了一场文艺演出,共演18个节目,如果每个年级至少演出4个节目,那么,这三个年级演出节目数的所有不同情况共有多少种? 【解析】、我们先把18个节目每个年级分配3个节目,这样三个班就都还差一个节目,总的还剩下9个节目,按照插板法来解答。9个节目排成一排共计8个间隔。分别选取任意2个间隔就可以分成3份;故答案为C8取2=28. 插板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1) 这n个元素必须互不相异 (2) 所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足 条件(1)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com