当前位置:首页 > 中考数学知识点 轴对称复习 轴对称知识点分类汇总大全(无答案)
例4:如图,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,E为CD的中点,四边形ABED的周长比△BCE的周长大2 cm,试求AB的长.
例5:如图,在等腰梯形ABCD中,AD∥BC,AB=CD,M为BC中点,则:
(1)点M到两腰AB、CD的距离相等吗?请说出你的理由。 (2)若连结AM、DM,那么△AMD是等腰三角形吗?为什么?
(3)又若N为AD的中点,那么MN⊥AD一定成立.你能说明为什么吗?
A D
E
B C
A
D E
F
M
C
B
例6、如图,在等腰梯形ABCD中,AD∥BC,AB=CD,E为CD中点,AE与BC的延长线交于F. (1)判断S△ABF和S梯形ABCD有何关系,并说明理由. (2)判断S△ABE和S梯形ABCD有何关系,并说明理由. (3)上述结论对一般梯形是否成立?为什么?
例7、如图,在梯形ABCD中,AD∥BC,E为CD的中点,AD+BC=AB.则: (1)AE、BE分别平分∠DAB、∠ABC吗?为什么? (2)AE⊥BE吗?为什么?
例8:在梯形ABCD中,∠B=90,AB=14cm ,AD=18cm ,BC=21cm,点P从点A开始沿AD边向点D以1 cm/s的速度移动,点Q从点C开始沿CB向点B以2cm/s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?
0
A D
E
B C F
A D E
B C
A P D B
Q C
中心对称与中心对称图形
一、知识点: 1、图形的旋转:
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。旋转前、后的图形全等。对应点到旋转中心的距离相等。每一对对应点与旋转中心的连线所成的角彼此相等。 2、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这一点对称。也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
注意:①中心对称是旋转的一种特例,因此, 成中心对称的两个图形具有旋转图形的一切性质。 ②成中心对称的2个图形,对称点的连线都经过对称中心, 并且被对称中心平分。 3、中心对称图形:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 4、中心对称与中心对称图形之间的关系:
区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 . 5、对比轴对称图形与中心对称图形:
轴对称图形 有一条对称轴——直线 沿对称轴对折 对折后与原图形重合 二、举例:
中心对称图形 有一个对称中心——点 绕对称中心旋转180 旋转后与原图形重合 O例1:如图,将点阵中的图形绕点O按逆时针方向旋转90,画出旋转后的图形.
O0
· 例2:画出将ΔABC绕点O按顺时针方向旋转120°后的对应三角形。
A ·O C B
例3:如图,已知ΔABC是直角三角形,BC为斜边。若AP=3,将ΔABP绕点A逆时针旋转后,能与ΔACP′重合,求PP′的长。
A P′
P
B C
共分享92篇相关文档