当前位置:首页 > 《数学史概论》教案
年建立了自己的学派,讲学于雅典的吕园,又称“吕园学派”,相传亚里士多德还做过亚历山大大帝的老师。“吾爱吾师,吾尤爱真理”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,那是古代西方人眼中的全部世界,而中国的长城距他们太远了。记录者古希腊哲学家费隆·拜占廷说过:“心眼所见,永难磨灭”。
2、亚历山大学派时期
公元前300-前30年。托勒密(托勒密·索特尔,约前367-前283年)统治下的希腊埃及,定都于亚历山大城,于公元前300年左右,开始兴建亚历山大艺术博物馆和图书馆,提倡学术,罗致人才,进入了亚历山大时期:希腊数学黄金时代,先后出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家,他们的成就标志了古典希腊数学的巅峰。
2.1 欧几里得(公元前325-前265年)
早年学习于雅典,公元前300年应托勒密一世之请来到亚历山大,成为亚历山大学派的奠基人。用逻辑方法把几何知识建成一座巍峨的大厦,他的公理化思想和方法历尽沧桑而流传千古,成为后人难以跨跃的高峰。“几何无王者之道”,后推广为:“求知无坦途”。
《原本》(Στοιχετα,意指:学科中具有广泛应用的最重要的定理)。 2.2 数学之神:阿基米德(公元前287-前212年)与牛顿(英,1642-1727年)、高斯(德,1777-1855年)并列有史以来最伟大的三大数学家之一,出生于西西里岛的叙拉古,曾在亚历山大城师从欧几里得的门生。
2.3 阿波罗尼奥斯(约公元前262-前190年),出生于小亚细亚的珀尔加,年青时曾在亚历山大城跟随欧几里得的门生学习,贡献涉及几何学和天文学,最重要的数学成就是在前人工作的基础上创立了相当完美的圆锥曲线论,以欧几里得严谨风格写成的传世之作《圆锥曲线》,是希腊演绎几何的最高成就,用纯几何的手段达到了今日解析几何的一些主要结论,确实令人惊叹,对圆锥曲线研究所达到的高度,直到17世纪笛卡儿、帕斯卡出场之前,始终无人能够超越。《圆锥曲线》全书共8卷,含487个命题。
5
3、希腊数学的衰落
公元180年前后的罗马帝国版图。
公元前6世纪,在意大利半岛的台伯河畔,有一座罗马城逐渐建立起来。公元前509年,罗马建立了共和国。古罗马经过多个世纪的战争,时分时合多次。公元前27年,罗马建立了元首政治,共和国宣告灭亡,从此进入罗马帝国时代。在公元前1世纪完全征服了希腊各国而夺得了地中海地区的霸权,建立了强大的罗马帝国。1世纪时,罗马帝国继续扩张,到2世纪,帝国版图确定下来,它地跨欧、亚、非三洲,地中海成了它的内湖。传统的史学家把公元前27年到公元284年称为早期罗马帝国。
进入晚期罗马帝国时期,帝国在战乱中于395年由最后一个君主提奥多正式把帝国分为两部分,西部以罗马为首都分给了长子阿卡狄(称为西罗马帝国),东部以君士坦丁堡(今土耳其的伊斯坦布尔)为首都分给了次子贺诺里(称为东罗马帝国)。476年,西罗马帝国皇帝被日耳曼人废掉,西罗马帝国灭亡,西欧奴隶制社会的历史结束了,从此进入了封建社会时期。
古罗马斗兽场 (建于公元70-82年)。
西班牙古罗马高架引水桥(建于公元1世纪末2世纪初)高架引水桥从遥远的雪山引水到阿尔卡萨城堡,全长15公里,有166个拱门,它由2万多块大石头堆砌而成,石块间没有任何水泥等灰浆类物质黏合,至今仍能坚固完好,实在令人叹为观止。据说,这座已经1900岁引水桥的引水功能,直到1950年还在使用呢!如今它是塞哥维亚的标志性建筑。
罗马帝国的建立,唯理的希腊文明从而被务实的罗马文明所取代。同气势恢弘的罗马建筑相比,罗马人在数学领域远谈不上有什么显赫的功绩。由于希腊文化的惯性影响以及罗马统治者对自由研究的宽松态度,在相当长一段时间内亚历山大城仍然维持学术中心的地位,产生了一批杰出的数学家和数学著作。从公元前30年-公元600年常称为希腊数学的“亚历山大后期”。
亚历山大后期希腊数学的一个重要特征是突破了前期以几何学为中心的传统,使算术和代数成为独立的学科。希腊算术与代数成就的最高标志是丢番图的《算术》,这是一部具有东方色彩、对古典希腊几何传统最离经叛道的算术与代数著作,其中最有名的一个不定方程:将一个已知的平方数分为两个平方数。17
6
世纪法国数学家费马在阅读《算术》时对该问题给出一个边注,引出了后来举世瞩目的“费马大定理”。另一重要贡献是创用了一套缩写符号,一种“简写代数”,是真正的符号代数出现之前的一个重要阶段。
古希腊数学的落幕。
基督教在罗马被奉为国教后,将希腊学术视为异端邪说,对异教学者横加迫害。公元415年,亚历山大女数学家希帕蒂娅(公元370-415年)被一群听命于主教的基督暴徒残酷杀害。希帕蒂娅曾注释过阿基米德、阿波罗尼奥斯和丢番图的著作,是历史上第一位杰出的女数学家。希帕蒂娅的被害预示了在基督教的阴影笼罩下整个中世纪欧洲数学的厄运。
柏拉图学园被封闭。公元529年东罗马皇帝查士丁尼(527-565年)下令封闭了雅典的所有学校,包括柏拉图公元前387年创立的雅典学院。
思考题
1、试分析芝诺悖论:飞矢不动。
2、欧几里得《原本》对数学以及整个科学的发展有什么意义? 3、简述欧几里得《原本》的现代意义?
4、以“化圆为方”问题为例,说明未解决问题在数学中的重要性。 5、体验阿基米德方法:通过计算半径为1的圆内接和外切正96边形的周长,计算圆周率的近似值,计算到小数点后3位数。
6、毕达哥拉斯学派是怎样引起第一次数学危机的?他们为什么要对这次数学危机采取回避的态度?
7
第三讲:中世纪的东西方数学I
中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9位中国科学家的数学工作。
1、中算发展的第一次高峰:数学体系的形成
秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。 《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100年)。它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。《九章算术》是由“九数”发展而来。在秦焚书(公元前213年)之前,至少已有原始的本子。经过西汉张苍(约公元前256-152年,约公元前200年,西汉阳武(今河南原阳)人)、耿寿昌(公元前73-49年,约公元前50年)等人删补,大约成书于东汉时期,至迟在公元100年。
2、中算发展的第二次高峰:数学稳步发展 三国演义(中国,1998)。
从公元220年东汉分裂,到公元581年隋朝建立,史称魏晋南北朝。这是中国历史上的动荡时期,也是思想相对活跃的时期。在长期独尊儒学之后,学术界思辨之风再起,在数学上也兴起了论证的趋势。许多研究以注释《周髀算经》、《九章算术》的形式出现,实质是寻求这两部著作中一些重要结论的数学证明。
8
共分享92篇相关文档