当前位置:首页 > 华东理工大学2007-2008学年高数(上)期中考试试卷答案
期 中 试 卷 答 案 2007.11
一. 填空题(每小题4分,共40分)
1.
1; 2. a?1; 3. e; 4. ?; 5. -2; 6. 2; 7.
2?dx; x4 8.
10!11学分)1x)11; 9.(2?4(x?4)?12(1?8??(x?4); 9.10.(11学分)(?32,92); 10.(8学分)1p. 二. 选择题(每小题4分,共32分) 答: C D C B A B A D
三.(本题6分) 解: g?(x)????14f3(3?2x)??3f2??(3?2x)?f?(3?2x)?2??4 g?(1)????1?4f3(5)?32??f(5)?f?(5)?2??4 =??(2)?34?4?f?(5)?2 =6??(2)f?(5) =6.
四.(本题8分)
2t2 解:
dy9?tdx?1?2,3t
2?11??3?t??3??22
dydx2?33?2(99?t2),
9?t2
d2ydx2|2t?3?(99?t2)|t?3?4.
五.(本题8分)
?cosx3x 解: lim?e1?esin?ln(1?tanx)
x?01?x?1?sinx3(8学分)12, 2;
esinx3 =lim?e1?cosx?sinx3?1?x?(1?x?x?sinx?1?sinx)
x?0 =2limx(1?cosx?sinx33x)x?0?x3x?sinx
2?1?cosxsin3x?3x??lim? =2lim?22?x?01?cosx x?0?xx?? =2???1?3?0?? =6. ?2?12六.(本题6分)
2 证:令F(x)?xf(x),则F(0)?0,F(1)?0,F(x)在[0,1]上满足罗尔定理的条件,
2 ???(0,1),使F?(?)?0,即2?f(?)??f?(?)?0.??0,故
2f(?)??f?(?)?0.
共分享92篇相关文档