当前位置:首页 > 在线式UPS的原理分析
图3-4正弦脉宽调制的能量等效图
(a)调制电路
(b)波形图
图3-5正弦脉宽调制法调制电路及波形图
在实际的小型UPS中,常用图3-5(a)所示的用比较器组成的正弦脉宽调制电路来实现上述脉宽调制的目的。若将三角波脉冲送到比较器的反相端,将正弦波送到比较器的同相端,则在正弦波电压幅值大于三角波电压时,比较器的输出端将产生一个脉宽等于正弦波大于三角波部分所对应的时间间隔的正脉冲。于是在电压比较器的输出端将得到一串矩形方波脉冲序列。假设三角波的频率fΔ与正弦波的频率f~之比为fΔ/f~=N(N称为载波比),为了使输出方波满足奇函数,N应是偶数。这种正弦脉宽调制方式的另一个重要特点是:在正弦波幅度小于三角波幅度范围内,输出波形中不包含3、5、7次等低次谐波分量。在脉宽调制输出波中仅存在与三角波工作频率相近的高次谐波。在目前实际使用的中、小型UPS中,正弦波的工作频率是50Hz,三角波的工作频率在8~40kHz之间。因此,采用这种正弦脉宽调制法的逆变器输出电压波形中,实际上基本不包含低次谐波分量,它们所包含的最低次谐波分量的频率都在几kHz以上。正因为如此,在正弦波输出的UPS装置中,逆变器所需的滤波器尺寸可以大大减小。实际上,在目前的中、小型电源中,一般都是利用输出电源变压器的漏电感再并联一个8~10μF的滤波电容即可构成逆变器的输出滤波器。 3.2逆变器电路
在线式UPS多采用单相桥式逆变电路,如图3-7所示。它是由直流电源E、输出变压器T及场效应管V1~V4管组成。
图3-7 单相全桥逆变电路
单相桥式逆变电路按其工作方式可分为:同频逆变电路、倍频逆变电路。 (1)同频逆变电路
在同频逆变电路中,场效应管V1、V2、V3、V4的栅极G1、G2、G3及G4分别加上正弦脉宽触发信号,其波形如图3-8所示。在ωto~ωt1期间,uG1与uG2为一组相位相反的脉冲。uG3=0,uG4为高电平;在ωt1~ωt2期间,uG3与uG4为一组相位相反的脉冲,uG1=0,uG2为高电平,其工作过程如下:V1栅极出现第一个脉冲时,V2的栅极脉冲消失,于是V1、V4导通;V2、V3截止。输出变压器初级电流i1沿着E+→V1→变压器初级→V4→E-路径流动。由于V1、V4导通,电源电压几乎全部加在变压器初级两端,即:电源的能量转换到变压器,变压器次级感应出电压。
图3-8同频逆变电路主要波形
由此可见,V1的栅极出现第一个触发脉冲时,变压器初、次级同时出现宽度相同的脉冲。不难推出,V1的栅极出现第二至第九个触发脉冲时,变压器初、次级也同时出现与图3-8宽度相同的第二个至第九个脉冲。其输出电压波形如图3-8(e)所示。
在ωt1~ωt2期间,分析方法与ωt0~ωt1相同,由分析可见: ·uO是正弦脉宽调制波。
·uO中脉冲频率与驱动信号(uG1~uG4)中脉冲频率相同,故将这种逆变电路称为同频逆变电路。 (2)倍频逆变电路
在倍频逆变电路中,场效应管V1、V2、、V3、V4栅极G1、G2、G3及G4分别加上正弦脉宽触发信号如图3-9所示。图中uG1与uG2,uG3与uG4相位相反,其工作过程如下: 在t0~t1期间:
uG1>0、uG4>0,uG2=0、uG3=0,V1、V4导通,V2、V3截止。变压器初级电流i1沿着E+→V1→变压器初级→V4→E-路径流动,由于V1、V4导通,故:电流的能量转移到变压器,变压器次级感应出电
图3-9倍频逆变电路主要波形
压,在这个电压推动下,变压器次级感应电流iO沿着“3”→R→L→“4”路径流动。变压器中能量一部分消耗在R上,另一部分储存在L中,uO的波形如图3-9(e)图所示。 在t1~t2期间:
uG1>0、uG3>0,uG2=0、uG4=0,V4截止。iO不能突变,iO继续按原来方向流动,负载电感中的能量一部分消耗在负载电阻上,另一部分储存在变压器中。i1也不能突变,它沿着“2”→V7→V1→“1”路径流动,变压器中的能量消耗
共分享92篇相关文档