云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 江苏省泰州中学2017届高三(上)摸底数学试卷(解析版)

江苏省泰州中学2017届高三(上)摸底数学试卷(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/5/2 2:04:45

若数列{bn}为等比数列, 则有而

故[a3(2t+1)]2=(2a2)?a4(2t2+t+1), 解得再将

, 代入bn,得

,知{bn}为等比数列,

∴t=. (3)由∴

,知

∴,

由不等式恒成立,

得恒成立,

设,由,

∴当n≤4时,dn+1>dn,当n≥4时,dn+1<dn, 而∴d4<d5, ∴∴

第17页(共20页)

, .

20.已知函数f(x)=(e为自然数的底数).

(1)求f(x)的单调区间;

(2)是否存在实数x使得f(1﹣x)=f(1+x),若存在求出x,否则说明理由; (3)若存在不等实数x1,x2,使得f(x1)=f(x2),证明:f(

)<0.

【考点】利用导数研究函数的单调性. 【分析】(1)先求出函数的导数,通过解关于导函数的不等式从而求出函数的单调区间; (2)通过讨论x的范围,假设存在x使得f(1﹣x)=f(1+x),当x=1时不成立,当x≠1时化简整理得e2x=

,进一步说明x>1,0<x<1,﹣1<x<0,x<﹣1时不成立;

(3)由于存在不等实数x1、x2,使得f(x1)=f(x2),即x1﹣lnx1=x2﹣lnx2,令g(x)=x﹣lnx,g(x1)=g(x2),

不妨设0<x1<1<x2,则2﹣x1>1,g(2﹣x1)﹣g(x2)=g(2﹣x1)﹣g(x1),化简整理,设F(t)=

﹣lnt,求出导数,判断单调性,得到x1+x2>2,即可得证

=

【解答】解:(1)f′(x)=

令f′(x)>0,解得:x<1,令f′(x)<0,解得:x>1, ∴函数f(x)在(﹣∞,1)递增,在(1,+∞)递减; (2)①若存在正实数x,使得f(1﹣x)=f(1+x), 即有

=

当x=1时等式左边等于0,右边大于0,等式不成立; 当x≠1时整理得e2x=

当x>1时,等式左边大于0,右边小于0,等式不成立, 当0<x<1时,有e2x<

故不存在正实数x,使得f(1﹣x)=f(1+x);

②同理可证不存在负实数x,使得f(1﹣x)=f(1+x); ③x=0时,显然满足条件,

综上x=0时,存在实数x使得f(1﹣x)=f(1+x); (3)证明:由于存在不等实数x1、x2,使得f(x1)=f(x2), 即为

=

,即

=ex1﹣x2,

即有x1﹣x2=lnx1﹣lnx2, 即x1﹣lnx1=x2﹣lnx2,

令g(x)=x﹣lnx,g′(x)=1﹣, g(x1)=g(x2),

第18页(共20页)

不妨设0<x1<1<x2, 则2﹣x1>1,

而g(2﹣x1)﹣g(x2) =g(2﹣x1)﹣g(x1)

=(2﹣x1)﹣ln(2﹣x1)﹣x1+lnx1 =2﹣2x1﹣ln

=t,则t>1,x1=

﹣lnt,

故F(t)=

故F′(t)=<0,

故F(t)在(1,+∞)上是减函数, 故F(t)<F(1)=0,

故g(2﹣x1)﹣g(x2)<0,

又∵g(x)在(1,+∞)上单调递增, ∴2﹣x1<x2, 故x1+x2>2,即

>1,

则有f′()=<0,

故f′(

)<0

第19页(共20页)

2016年10月14日

第20页(共20页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

即若数列{bn}为等比数列, 则有而, , , 故[a3(2t+1)]2=(2a2)?a4(2t2+t+1), 解得再将, 代入bn,得, 由,知{bn}为等比数列, ∴t=. (3)由∴,知, , ∴, 由不等式恒成立, 得恒成立, 设,由, ∴当n≤4时,dn+1>dn,当n≥4时,dn+1<dn, 而∴d4<d5, ∴∴ 第17页(共20页) , , . 20.已知函数f(x)=(e为自然数的底数). (1)求f(x)的单调区间;

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com