当前位置:首页 > 八年级数学分式方程11
16.3 分式方程(1)
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法. 3.了解解分式方程解的检验方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点 1.教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想. 2.教学难点:检验分式方程解的原因 3.疑点及分析和解决办法:
解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法. 四、教学手段
演示法和同学练习相结合,以练习为主. 五、教学过程
(一)复习及引入新课
1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
解:(1)当x=0时,
右边=0,
∴左边=右边,
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
(二)新课 板书课题:
板书:分式方程的定义.
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程. 练习:判断下列各式哪个是分式方程.
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.
先由同学讨论如何解这个方程.
在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.
解:两边同乘以最简公分母2(x+5)得 2(x+1)=5+x 2x+2=5+x x=3.
如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解. 检验:把x=3代入原方程
左边=右边
∴x=3是原方程的解. (三) 应用
一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用
的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v千米/时,
则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。 可列方程
60100小时,逆流航行60千米所用的时间为小
20-v20+v60100=
20+v20-v解方程得:v=5
检验:v=5为方程的解。 所以水流速度为5千米/时。 (四)总结
解分式方程的一般步骤:
1.在方程的两边都乘以最简公分母,约去分母,化为整式方程. 2.解这个方程.
3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.
(五)练习 补充练习:
解1:方程两边同乘x(x-2), 5(x-2)=7x 5x-10=7x 2x=10 x=5.
检验:把x=-5代入最简公分母 x(x-2)≠0,
∴x=-5是原方程的解.
方程两边同乘最简公分母(x-2),
1=x-1-3(x-2). (-3这项不要忘乘) 1=x-1-3x+6 2x=4 x=2.
检验:把x=2代入最简公分母(x-2)=0, ∴原方程无解. 六、作业 七、板书设计
16.3 分式方程(2)
教学目标:
1、使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程. 2、使学生检验解的原因,知道解分式方程须验根并掌握验根的方法 重点难点:
1. 了解分式方程必须验根的原因;
2. 培养学生自主探究的意识,提高学生观察能力和分析能力。 教学过程: 一.复习引入 解方程:
x?51? 4?xx?4x?51?解: 1? 方程两边同乘以x?4x?4(1)1?得 . ∴ 检验:把x=5代入 x-5,得x-5≠0 所以,x=5是原方程的解. (2)
,
x?216x?2?2? x?2x?4x?2 ,得
, ∴
2
2
解:方程两边同乘以
.
检验:把x=2代入 x—4,得x—4=0。 所以,原方程无解。.
思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢? 学生活动:小组讨论后总结
共分享92篇相关文档