当前位置:首页 > 新北师大版八年级数学下册--全册教案
北师大版 八年级数学下册教案
(2)进一步掌握推理证明的方法,发展演绎推理的能力。 3.情感态度与价值观
体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。 【教学重点】
掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。 【教学难点】
应用定理解决与直角三角形有关的问题。 【教学方法】
讲授法 【课时安排】
2课时
第一课时
【教学目标】
1.知识与技能
掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。
2.过程与方法
进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维。
3.情感态度与价值观
在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。 【教学重点】
掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。 【教学难点】
结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立。
【教学过程】 教学过程 第一环节:创设情境,引入新课 通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。 [问题1]一个直角三角形房梁如图所示,其中BC⊥AC, ∠BAC=30°,AB=10 cm,CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少? B1C1呢? 解:在Rt△ABC中,∠CAB=30°,AB=10 cm, 11∴BC= AB= ×10=5 cm. 22∵CB1⊥AB,∴∠B+∠BCB1=90° 又∵∠A+∠B=90° ∴∠BCB1 =∠A=30° BB1教学随笔 A115在Rt△ACB1中,BB1= BC= ×5= cm=2.5 cm. 222∴AB1=AB=BB1=10—2.5=7.5(cm). ∴在Rt△C1AB1中,∠A=30° 第 13 页 共 268 页
C1C北师大版 八年级数学下册教案
11∴B1C1 = AB1= × 7.5=3.75(cm). 22解决这个问题,主要利用了上节课已经证明的“30°角的直角三角形的性质”.由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明。 教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗? 请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法. 第二环节:讲述新课 阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读. (1).勾股定理及其逆定理的证明. 已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c. 求证:a2+b2=c2. 证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED. ∴∠BDE=90°,ED=a(全等三角形的对应角相等,A对应边相等). ∴四边形ACDE是直角梯形. 11∴S梯形ACDE= (a+b)(a+b) = (a+b)2. 22∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°, AB=BE. 1∴S△ABE= c2 2∵S梯形ACDE=S△ABE+S△ABC+S△BED, 1111∴ (a+b) 2= c2 + ab + ab, 2222111即 a2 + ab + b2= c2 + ab, 222CBAEbCcaBD∴a2+b2=c2 教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调.具体如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方. 反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗? A师生共同来完成. 已知:如图:在△ABC中,AB2+AC2=BC2 求证:△ABC是直角三角形. 分析:要从边的关系,推出∠A=90°是BC第 14 页 共 268 页
北师大版 八年级数学下册教案
不容易的,如果能借助于△ABC与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证. 证明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如图), 则A′B′2+A′C′2.(勾股定理). A'222∵AB+AC=BC,A′B′=AB,A′C′ ∴BC2=B′C′2 ∴BC=B′C′ B'C'∴△ABC≌△A′B′C′(SSS) ∴∠A=∠A′=90°(全等三角形的对应角相等). 因此,△ABC是直角三角形. 总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (2).互逆命题和互逆定理. 观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗? 通过观察,学生会发现: 上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件. 这样的情况,在前面也曾遇到过.例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”.又如“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”。 第三环节:议一议 观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。 让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果……;那么……”的形式,以及能够写出一个命题的逆命题。 活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生观察下面三组命题: 如果两个角是对顶角,那么它们相等. 如果两个角相等,那么它们是对顶角. 如果小明患了肺炎,那么他一定发烧. 如果小明发烧,那么他一定患了肺炎. 三角形中相等的边所对的角相等. 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流. 不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件. 在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题. 再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第第 15 页 共 268 页
北师大版 八年级数学下册教案
一个命题为原命题,另一个则为逆命题.请同学们判断每组原命题的真假.逆命题呢? 在第一组中,原命题是真命题,而逆命题是假命题. 在第二组中,原命题是真命题,而逆命题是假命题. 在第三组中,原命题和逆命题都是真命题. 由此我们可以发现:原命题是真命题,而逆命题不一定是真命题. 第四环节:想一想 要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题. 请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗?它们都是真命题吗? 从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗? 并通过具体的实例说明。 如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理. 其中逆命题成为原命题(即原定理)的逆定理. 能举例说出我们已学过的互逆定理? 如我们刚证过的勾股定理及其逆定理,“两直线平行,内错角相等”与“内错角相等,两直线平行”.“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等. 第五环节:随堂练习 说出下列命题的逆命题,并判断每对命题的真假; (1)四边形是多边形; (2)两直线平行,内旁内角互补; (3)如果ab=0,那么a=0, b=0 [分析]互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题. 解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题. (2)同旁内角互补,两直线平行.原命题与逆命题同为正. (3)如果a=0,6=0,那么ab=0.原命题是假命题,而逆命题是真命题. 第六环节:课时小结 这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力. 第七环节:课后作业 习题1.5第1、2、3、4题 【板书设计】 1.2 直角三角形(一) 已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c. 求证:a2+b2=c2.
证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED.
第 16 页 共 268 页
共分享92篇相关文档