云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版2018-2019学年八年级(下)期末数学试卷(含解析) (1)(01)

北师大版2018-2019学年八年级(下)期末数学试卷(含解析) (1)(01)

  • 62 次阅读
  • 3 次下载
  • 2025/5/8 1:09:46

解得:x=4,

∴点B的坐标为(4,0).

设点D的坐标为(0,m)(m<0),

∵S△COD=S△BOC,即﹣m=××4×3, 解得:m=﹣4,

∴点D的坐标为(0,﹣4).

【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程. 24.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可. (2)解直角三角形求出BC=2.AB=DC=2

,连接OE,交CD于点F,根据菱形的性质得出

F为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可. 【解答】(1)证明:∵CE∥OD,DE∥OC, ∴四边形OCED是平行四边形,

∵矩形ABCD,∴AC=BD,OC=AC,OD=BD, ∴OC=OD,

∴四边形OCED是菱形;

(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4, ∴BC=2, ∴AB=DC=2

连接OE,交CD于点F,

∵四边形OCED为菱形,

17

∴F为CD中点, ∵O为BD中点, ∴OF=BC=1, ∴OE=2OF=2,

∴S菱形OCED=×OE×CD=×2×2

=2

【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半. 25.【分析】(1)根据收费标准,列代数式求得即可;

(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;

(3)分三种情况分别计算自变量的取值,从而做出判断.

【解答】解:(1)当x=10时,甲复印店收费为:0,1×10=1元, 当x=30时,乙复印店收费为:0.12×20+0.09×10=3.3元; 故答案为:1,3.3;

(2)y1=0.1x(x≥0); y2=

(3)①当y1>y2时,即:0.1x>0.09x+0.6,解得:x>60; ②当y1=y2时,即:0.1x=0.09x+0.6,解得:x=60; ③当y1<y2时,即:0.1x<0.09x+0.6,解得:x<60;

因此,当x>60时,乙的花费少,当x=60时,甲、乙的花费相同,当x<60时,甲的花费少. 答:当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以. 【点评】考查一次函数的图象和性质、分段函数的实际意义等知识,正确的理解题意是关键,分类讨论思想方法的应用才是问题显得全面.

26.【分析】(1)由正方形的性质可得AO=BO,AO⊥BO,∠BAO=∠ABO=45°,由“ASA”可证△AOE≌△BOF,可得S△AOE=S△BOF,即可求解;

(2)过点A作AM⊥CD于点M,AN⊥BC于点N,由“SAS”可得△AMD≌△ANB,可得AM=

18

AN,S△AMD=S△ABN,可得S四边形ABCD=S四边形AMCN,由正方形的面积公式可求四边线ABCD的面积.

【解答】解:(1)∵四边形ABCD是正方形 ∴AO=BO,AO⊥BO,∠BAO=∠ABO=45° ∴∠AOE+∠BOE=90° ∵A1OC1=90°

∴∠A1OB+∠BOC1=90°

∴∠AOE=∠BOF,且AO=BO,∠BAO=∠ABO=45° ∴△AOE≌△BOF(ASA) ∴S△AOE=S△BOF,

∴两个正方形重叠部分的面积=S△ABO=正方形ABCD的, (2)过点A作AM⊥CD于点M,AN⊥BC于点N,

∵∠BAD=∠BCD=90°,∠ABC+∠ADC+∠BAD+∠BCD=360°, ∴∠ADC+∠ABC=180°,且∠ADC+∠ADM=180° ∴∠ADM=∠ABC,且AD=AB,∠AMD=∠ANB=90° ∴△AMD≌△ANB(AAS) ∴AM=AN,S△AMD=S△ABN, ∴S四边形ABCD=S四边形AMCN, ∵∠ANC=∠AMC=∠MCN=90° ∴四边形AMCN是矩形,且AM=AN ∴四边形AMCN是正方形

∴S四边形ABCD=S正方形AMCN=AC2=18.

【点评】本题考查了旋转的性质,全等三角形的性质,正方形的性质,等腰直角三角形,添加恰当辅助线构造全等三角形是本题的关键.

19

20

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

解得:x=4, ∴点B的坐标为(4,0). 设点D的坐标为(0,m)(m<0), ∵S△COD=S△BOC,即﹣m=××4×3, 解得:m=﹣4, ∴点D的坐标为(0,﹣4). 【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程. 24.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可. (2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出O

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com