云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 华南理工大学网络教育学院-2019–2020学年度第一学期《离散数学》作业

华南理工大学网络教育学院-2019–2020学年度第一学期《离散数学》作业

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 22:25:50

华南理工大学网络教育学院 2019–2020学年度第一学期 《 离散数学 》作业

1、 用推理规则证明 Q,?P ? R, P ? S,? S? Q ?R 证 (1)?Q ?R P (2)? R P (3)? Q (1)(2)析取三段论 (4)?(P? ?Q) P

(5)?P ? Q (4)等价转换 (6)? P (3)(5)析取三段论

2、用推理规则证明 ?(P? ?Q),?Q ?R,? R??P 证 (1)?Q ?R P (2)? R P (3)? Q (1)(2)析取三段论 (4)?(P? ?Q) P

(5)?P ? Q (4)等价转换 (6)? P (3)(5)析取三段论

3.设命题公式为 ? Q ?(P ? Q)? ? P。 (1)求此命题公式的真值表; 解真值表如下

P Q ?Q P?Q 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1

(2)求此命题公式的析取范式;

? Q ?(P ? Q)? ? P??(? Q ?(?P? Q))?? P ?( Q? ?(?P? Q))?? P??(?P? Q)?( Q? ? P)?1(析取范式) ?(?P??Q)?(?P?Q)?(P??Q)?(P?Q)(主析取范式)

《 离散数学作业 》 第 1 页 (共 6 页)

? Q ?(P ? Q) 1 0 0 0 ? P 1 1 0 0 ? Q ?(P ? Q)? ? P 1 1 1 1

(3)判断该命题公式的类型。 答:该公式为重言式

4.在一阶逻辑中构造下面推理的证明

每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。

令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。 答:

解 前提:?x(F(x)?? G(x)),?x(G(x)?H(x)),? x? H(x)。

结论:? x ?F(x)。

证 (1)? x ?H(x) P (2)?H(c) ES (1)

(3)?x(G(x)?H(x)) P (4) G(c)?H(c) US(3) (5) G(c) T(2,4)I

(6)?x(F(x)?? G(x)) P (7) F(c)?? G(c) US(6) (8) ? F(c) T(5,7)I

(9)(?x)? F(x) EG(8)

5.用直接证法证明:

前提:(?x)(C(x)→ W(x)∧R(x)),(?x)(C(x)∧Q(x)) 结论:(?x)(Q(x)∧R(x))。 答:

证 (1)(?x)(C(x)∧Q(x)) P

(2)C(c)∧Q(c) ES (1)

(3)(?x)(C(x)→ W(x)∧R(x)) P (4) C(c)→ W(c)∧R(c) US(3) (5) C(c) T(2)I

(6)W(c)∧R(c) T(4,5)I (7)R(c) T(6)I

《 离散数学作业 》 第 2 页 (共 6 页)

(8)Q(c) T(2)I

(9)Q(c)∧R(c) T(7,8)I (10) (?x)(Q(x)∧R(x)) EG(9)

6.设R是集合A = {1, 2, 3, 4, 5, 6, 7, 8, 9}上的整除关系。

(1) 给出关系R;(2)画出关系R的哈斯图;

答:

解 R={<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<1,9>,<2,4>,<2,6>,<2,8>,<3,6>,<3,9>,<4,8>}∪IA

COV A={<1,2>,<1,3>,<1,5>,<1,7>,<2,4>,<2,6>,<3,6>,<3,9>,<4,8>} 作哈斯图如右:

(2) 指出关系R的最大、最小元,极大、极小元。 答:

极小元和最小元为1;

极大元为5,6,7,8,9, 无最大元

7.设R是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。

(1) 给出关系R;

答:解 R={<1,2>,<1,3>,<1,4>,<1,6>,<1,12>,<2,4>,<2,6>,<2,12>,<3,6>,<3,12>,<4,12>,<6,12>}∪IA

(2) 给出COV A 《 离散数学作业 》 第 3 页 (共 6 页)

869423517

答:COV A={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,12>,<6,12>}

(3) 画出关系R的哈斯图; 答:作哈斯图如右:

(4) 给出关系R的极大、极小元、最大、最小元。 答:极小元和最小元为1; 极大元和最大元为12

8.求带权图G的最小生成树,并计算它的权值。

1242163

答:

解 C?T??1?2?3??1 7

1312

9.给定权为1,9,4,7,3;构造一颗最优二叉树。 答:

解 1 3 4 7 9 4 4 7 9 8 7 9 15 9 24

24158349741《 离散数学作业 》 第 4 页 (共 6 页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

华南理工大学网络教育学院 2019–2020学年度第一学期 《 离散数学 》作业 1、 用推理规则证明 Q,?P ? R, P ? S,? S? Q ?R 证 (1)?Q ?R P (2)? R P (3)? Q (1)(2)析取三段论 (4)?(P? ?Q) P (5)?P ? Q (4)等价转换 (6)? P (3)(5)析取三段论 2、用推理规则证明 ?(P? ?Q),?Q ?R,? R??P 证 (1)?Q ?R P (2)? R P (3)? Q (1)(

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com