当前位置:首页 > 等腰三角形教学设计 - 图文
教 学 目 标 知识技能 等腰三角形(第1课时) 1.探索并掌握等腰三角形的性质及其证明。 2. 体会性质证明的必要性,理解证明的基本过程,掌握综合法证明的格式,运用等腰三角形性质进行证明和计算。 通过教学活动让学生操作、观察进而发现、归纳、证明等腰三角形的“等边对等角”,“三线合一”的重要性质, 培养学生逻辑思维能力 过程与方法 情感态度 与价值观 在探究、证明等腰三角形性质过程中,培养学生观察力,归纳总结、逻辑推理和数学表达能力,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心. 教学重点 教学难点 课型 教法 等腰三角形 “等边对等角”,“三线合一”的性质和应用 等腰三角形 “三线合一”的理解、正确表述和运用。 新授课 教法:主要采用“情景——探究——猜想——交流”教法 学法:动手操作、观察感悟、合作交流、成果展示 师:多媒体课件,投影仪 生:长方形纸片、剪刀、自制等腰三角形纸片 教学过程 教学 师生互动过程 设计意图 环节 让学生主动的参与探索,尝试发师生共同回顾:有两条边相等的三角 现,成为学习的主人。 形,叫做等腰三角形,相等的两边叫做腰,创 另一条边叫做底,两腰所夹的角叫做顶角,创设有助于学生自主学习的问题情境为学生提供参与数学活动的时间和空设 底边与腰的夹角叫做底角 间,调动学生的主观能动性,激发好 情 奇心和求知欲。 活动1 境 问题:请同学们把一张长方形的纸片对 折,剪去(或用刀子裁)一个角,再把它展 开,得到的是什么样三角形? 教师示范操作,然后学生跟着动手操对等腰三角形的概念进行回顾并产生激 作,观察得出结论:“剪刀剪过的两条边是发 相等的;剪出的图形是等腰三角形”,根据新的问题。 学生回答 兴 趣 媒体
1
引 入 新 课 教师提问:剪出的三角形是轴对称图形吗?探索问题的提出是为了让学生根据已有的知识积极思考,大胆猜想。 你能发现这个三角形有哪些特点吗?它具 有怎样的特性呢?这将是我们这节课共同活动2 引出等腰三角形的性质 探索的问题。 (板书) 课题:探究等腰三角形的性质。 数 学 思 考 师 生 互 动 启 发 猜 想
教师出示刚才剪下的等腰三角形纸片,标上字母如图所示: 学生利用折纸、测量、借助几何画板等方法进行直观验证。 教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。 此教学环节我从学生爱猜想和预见的天性出发,既调动了学生学习的积极主动性,又创造性的使用教材, 让学生学会一种分析问题、解决问题的方式方法:从特殊到一般,学会运用分类、化归思想将问题转化。 2
把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?那么就请同学们尝试一下!哪位同学想把实验结果与大家交流? 生:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD 课件显示同学的猜想: 1、等腰三角形的两底角相等。 2、三角形的顶角的平分线、底边上的中线、底边上的高互相重合 。 活动3 问题 (1)性质1(等腰三角形两个底角相等)的条件和结论分别是什么? (2)用数学符号如何表达条件和结论? (3) 如何证明?学生可结合图形回答 (板书)已知:在△ABC中,AB=AC 求证:∠B=∠C 说明:将等腰三角形写成已知时,通常写成“在△ABC中,AB=AC”而不写成“等腰”两个字教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形? 通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正。
数 学 思 考 师 生 互 动 启 发 猜 想 当堂训练 巩固新知 师:我们得到等腰三角形如下性质: 性质1:等腰三角形的两个底角相等,简称:等边对 等角(板书) (4)受性质1的证明启发,你能证明性质2(等腰三角形定角平分线、底边上的中线、底边上的高相互重 合)吗? 培养学生语言转换能力,增教师可作提示:作中线AD,由学生口答. 强理性认识,体验性质的正确性,提高演绎推理能力。 问题:在△ ABC中,若AB=BC=CA, 则 ∠ A=______∠B=______∠C=______ 关注:(1)学生语言推论: 等边三角形三个内角都相等,每一个角都等于 的规范性; 60° 。 例1 如图在△ABC中,AB=AC,∠BAC= (2)学生的应用意识,模仿能力; (3)学生120°,点D、E是底边的两点,且BD=AD,CE=AE, 求在活动中发表个人见解的A 勇气 ∠DAE的度数。B D E C 提出问题:去掉AB=AC,能否求出∠DAE的度数? 活动4 牛刀小试 (1)等腰三角形一个底角为40°,它的顶角为______. (2) ⒉等腰三角形一顶角为40°,它的另外两个底角为 ______. (3) 等腰三角形一个角为40°,它的另外两个角为___________. (4).等腰三角形一个角为120°,它的另外两个角为 . 学生独立思考解决问题(1)(2)。教师评判。 学生讨论问题(3)(4)教师参与其中倾听并引导。。 3
为满足学生学习的不同需求,在都能获得必要发展的前提下,我设计以下训练活动及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力,同时培养学生分类讨论的思想
回顾 感悟 通过本节课的学习,你有哪些收获?鼓励学生畅培养学生总结归纳的习惯,提高学生自主建构知识网络,分析、解决问题的课堂 所欲言,各抒己见。 收获 节课所学内容,必要时给予适当的补充。 复习后顾 课下作业 必做题:习题16.3 1,2 选做题:在?ABC 中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,连接DE交BC于点F。 求证:DF=EF 师生互动,总结新知 请同学们回顾本节课所学的内容,有哪些收获? 师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等边三角形性质;4、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线) 作业设计,深化新知 引导学生从知识、方法、数学思想等方面小结本能力,达到触类旁通。 尊重学生个体存在差异的客观事实,让不同的学生获得不同的发展。所以作业的设计分层要求 选做题渗透了分类、化归思想,有助于培养学生的数学应用意识,让学生感悟数学来源于生活应用于生活,激发学生学习的热情。 A D B
F C E 4
共分享92篇相关文档