当前位置:首页 > 吉林省长春市2017届高考数学三模试卷(理科) Word版含解析
值为1,2,3,利用超几何分布列的计算公式即可得出.
【解答】解:(Ⅰ)女性用户和男性用户的频率分布表分别如下左、右图:
由图可得女性用户更稳定.(4分)
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于8(0分)有6人,其中评分小于9(0分)的人数为4,从6人中任取3人,记评分小于9(0分)的人数为X,则X取值为1,2,3,所以X的分布列为
X P 1 .(12分)
【点评】本题考查了频率分布直方图的性质、超几何分布列的概率与数学期望计算公式、分层抽样,考查了推理能力与计算能力,属于中档题.
19.(12分)(2017?长春三模)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点. (1)求证:PD⊥平面ABE; (2)若F为AB中点,弦值为
.
,试确定λ的值,使二面角P﹣FM﹣B的余
2 3 ;P(X=2)=
=;
.
【考点】二面角的平面角及求法;直线与平面平行的判定.
【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.
(II) 以A为原点,以
为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,
求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.
【解答】解:(I)证明:∵PA⊥底面ABCD,AB?底面ABCD,∴PA⊥AB, 又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA?平面PAD,AD?平面PAD, ∴AB⊥平面PAD,又PD?平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE?平面ABE,AB?平面ABE,∴PD⊥平面ABE. (II) 以A为原点,以令|AB|=2,
为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,
则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),
,
,
,M(2λ,2λ,2﹣2λ)
设平面PFM的法向量,,即,
设平面BFM的法向量,,
即,
,解得.
【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.
20.(12分)(2017?长春三模)已知F1,F2分别是长轴长为
的椭圆C:
的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2
O为坐标原点,的一个动点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为(1)求椭圆C的方程;
.
(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是的取值范围.
【考点】直线与椭圆的位置关系. 【分析】(1)由已知2a=2=
?
,解得a=
,记点P(x0,y0),kOM=
,可得kOM?,求线段AB长
利用斜率计算公式及其点P(x0,y0)在椭圆上,即可得出.
2222
(2)设直线l:y=k(x+1),联立直线与椭圆方程得(2k+1)x+4kx+2k﹣2=0,记A(x1,
y1),B(x2,y2).利用根与系数的关系、中点坐标公式、弦长公式即可得出. 【解答】解:(1)由已知2a=2∵kOM=
,∴kOM?
=
,解得a=?
=
,记点P(x0,y0), ?
=
,
又点P(x0,y0)在椭圆上,故
+
=1,∴kOM?=﹣=﹣,
∴
2
,∴b=1,∴椭圆的方程为
.(4分)
(2)设直线l:y=k(x+1),联立直线与椭圆方程,
2222
得(2k+1)x+4kx+2k﹣2=0,记A(x1,y1),B(x2,y2).
由韦达定理可得,
可得,
故AB中点,
QN直线方程:,
∴,已知条件得:
2
,∴0<2k<1,
∴,
∵,∴.(12分)
【点评】本题考查了椭圆的定义标准方程及其性质、一元二次方程的根与系数的关系、斜率 计算公式、中点坐标公式、两点之间的距离公式,考查了推理能力与计算能力,属于难题.
21.(12分)(2017?长春三模)已知函数(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f(x2)),中点横坐标为x0,证明:f'(x0)<0.
【考点】利用导数研究函数的极值;利用导数研究函数的单调性.
【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;
(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可. 【解答】解:(1)f′(x)=
,f(x)的定义域是(0,+∞),
.
x∈(0,e)时,f′(x)>0,f(x)单调递增; x∈(e,+∞)时,f'(x)<0,f(x)单调递减.
共分享92篇相关文档