云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 山东省临沂、枣庄市2019届高三第二次模拟预测数学(理)试题(解析版)

山东省临沂、枣庄市2019届高三第二次模拟预测数学(理)试题(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/5 3:30:10

A.4﹣ B.8﹣π C.8﹣ D.8﹣2π

【分析】根据三视图,可得该几何体是正方体挖去一个半圆柱,利用三视图的数据求解即可.

【解答】解:由题意可得,几何体是正方体挖去一个半圆柱,如图: 故它的体积为(4﹣故选:B.

)×2=8﹣π,

【点评】本题主要考查祖暅原理,利用三视图求几何体的体积,属于基础题. 12.(5分)已知双曲线

的右顶点A,抛物线c:y=12ax的

2

焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是( ) A.(1,2)

B.(1,

]

C.(2,+∞)

D.

【分析】求出双曲线的右顶点和渐近线方程,抛物线的焦点坐标,可设P(m,m),以及向量的垂直的条件:数量积为0,再由二次方程有实根的条件:判别式大于等于0,化简整理,结合离心率公式即可得到所求范围. 【解答】解:双曲线

抛物线C:y=12ax的焦点为F(3a,0), 双曲线的渐近线方程为y=±x, 可设P(m,m), 即

=(m﹣a,m),

=(m﹣3a,m),

2

的右顶点A(a,0),

由PA⊥FP,可得=0,

m=0,

2

即为(m﹣a)(m﹣3a)+

化为(1+)m﹣4ma+3a=0,

22

由题意可得△=16a﹣4(1+

2

2

2

2

2

)?3a≥0,

2

即有a≥3b=3(c﹣a), 即3c≤4a, 则e=≤

2

2

由e>1,可得1<e≤故选:B.

【点评】本题考查双曲线的离心率的范围,考查抛物线的焦点和向量的数量积的性质,注意运用二次方程有实根的条件:判别式大于等于0,考查运算能力,属于中档题. 二、填空题:本大题共4个小题,每小题5分,共20分.

13.(5分)若向量=(x+1,2)和向量=(1,﹣2)垂直,则|﹣|= 5 . 【分析】由向量=(x+1,2)和向量=(1,﹣2)垂直,解得x=3,从而4),由此能求出|﹣|的值.

【解答】解:∵向量=(x+1,2)和向量=(1,﹣2)垂直, ∴∴

=x+1﹣4=0,解得x=3, =(3,4),

=5.

=(3,

∴|﹣|=故答案为:5.

【点评】本题考查向量的模的求法,考查向量的运算法则、向量垂直的性质等基础知识,考查运算求解能力,是基础题. 14.(5分)已知二项式

展开式中含x项的系数为160,则实数a的值为 ﹣2 .

3

【分析】先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式中含x项的系数,再根据含x项的系数为160,求得a的值. 【解答】解:二项式

展开式的通项公式为 Tr+1=

3

3

3

(﹣a)?x?

3

r12﹣3r

令12﹣3r=3,求得r=3,可得展开中含x项的系数为则实数a=﹣2, 故答案为:﹣2.

(﹣a)=160, ?

【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

15.(5分)若数列{an}满足:的前n项和Sn为 2﹣

,则数列{an}

【分析】由已知可得数列{an}是以1为首项,以为公比的等比数列,再由等比数列的前n项和公式求解. 【解答】解:由得

∴2an=2,即

n

(n≥2),

(n≥2),

由已知等式可得,2a1=2,得a1=1适合上式, ∴

又,

∴数列{an}是以1为首项,以为公比的等比数列,

则.

故答案为:.

【点评】本题考查数列递推式,考查等比关系的确定,训练了等比数列前n项和的求法,是中档题.

16.(5分)如图,A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的表面积为24π,则异面直线PC与AB所成角的余弦值为

【分析】推导出OP=OC=OA=OB=

,PA⊥AC,AC=2

,PA=2,以B为原点,

BC为x轴,BA为y轴,过B作平面ABC的垂线为z轴,建立空间直角坐标系,由此能求出异面直线PC与AB所成角的余弦值.

【解答】解:∵A,B两点都在以PC为直径的球O的表面上, AB⊥BC,AB=2,BC=4,球O的表面积为24π, ∴4πr=24π,解得r=∴OP=OC=OA=OB=AC=

=2

,PA=

2

,PA⊥AC,

=2,

以B为原点,BC为x轴,BA为y轴,过B作平面ABC的垂线为z轴,建立空间直角坐标系,

则P(0,2,2),C(4,0,0),A(0,2,0),B(0,0,0), =(4,﹣2,﹣2),

=(0,﹣2,0),

设异面直线PC与AB所成角为θ, 则cosθ=

∴异面直线PC与AB所成角的余弦值为故答案为:

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

A.4﹣ B.8﹣π C.8﹣ D.8﹣2π 【分析】根据三视图,可得该几何体是正方体挖去一个半圆柱,利用三视图的数据求解即可. 【解答】解:由题意可得,几何体是正方体挖去一个半圆柱,如图: 故它的体积为(4﹣故选:B. )×2=8﹣π, 【点评】本题主要考查祖暅原理,利用三视图求几何体的体积,属于基础题. 12.(5分)已知双曲线的右顶点A,抛物线c:y=12ax的2焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是( ) A.(1,2) B.(1,] C.(2,+∞) D. 【分析】求出双曲线的右顶点和渐近线方程,抛物线的焦点坐标,可设P(m,m),以及向量的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com