云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整版)离散数学答案(尹宝林版)第一章习题解答

(完整版)离散数学答案(尹宝林版)第一章习题解答

  • 62 次阅读
  • 3 次下载
  • 2025/5/23 6:23:38

?1|?B。

证明 任取满足?1的真值赋值v。对于?2中每个公式A,因为?1|?A,所以v(A)?1。这表明v满足?2。又因为?2|?B,所以v(B)?1。因此,?1|?B。 33.公式集合?不可满足当且仅当?|?0。

证明 (?)设?|?/0,则存在真值赋值v满足?且v(0)?0,因此?可满足。 (?)设?|?0。若?可满足,有真值赋值v满足?,由?|?0得出v(0)?1,这是不可能的。因此,?不可满足。

34.设n是正整数,??{p1?q1,?,pn?qn,p1???pn}?{?(qi?qj)|1?i?j?n}。证明:?|?(q1?p1)???(qn?pn)。

证明 设真值赋值v满足?,则v(p1???pn)?1,存在i?n使v(pi)?1。因为

v(pi?qi)?1,所以v(qi)?1。若1?j?i,因为v(?(qj?qi))?1,因此v(qj)?0。

i?j?n,因为v(?(qi?qj))?1,因此v(qj)?0。所以

v((q1?p1)???(qn?pn))?1。

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

?1|?B。 证明 任取满足?1的真值赋值v。对于?2中每个公式A,因为?1|?A,所以v(A)?1。这表明v满足?2。又因为?2|?B,所以v(B)?1。因此,?1|?B。 33.公式集合?不可满足当且仅当?|?0。 证明 (?)设?|?/0,则存在真值赋值v满足?且v(0)?0,因此?可满足。 (?)设?|?0。若?可满足,有真值赋值v满足?,由?|?0得出v(0)?1,这是不可能的。因此,?不可满足。 34.设n是正整数,??{p1?q1,?,pn?qn,p1???pn}?{?(qi?qj)|1?i?j?n}。证明:?|?(q1?p1)???(qn?pn)。 证明 设真值赋值v满足?,则v(p1???pn)?1,存在i?n使v(pi)?1。因为v(pi?qi)?1,所以v(qi)?1。若1?j?i,因为

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com