µ±Ç°Î»ÖãºÊ×Ò³ > »ùÓÚDSPµÄFFTµÄʵÏÖ - ͼÎÄ
ÉÛÑôѧԺ¿Î³ÌÉè¼Æ
DSP ´úÂëÔÚÓ²¼þ»ò·ÂÕæ×´Ì¬ÖеÄÔËÐÐÇé¿ö¡£
3ϵͳ·½°¸Éè¼Æ
3.1Éè¼ÆÔÀí
3.1.1ÀëÉ¢¸µÀïÒ¶±ä»»DFT
¶ÔÓÚ³¤¶ÈΪNµÄÓÐÏÞ³¤ÐòÁÐx(n)£¬ËüµÄÀëÉ¢¸µÀïÒ¶±ä»»£¨DFT£©Îª
?X(k)= ?ʽÖУ¬WN=e
-j*2¦Ð/N
n?0x(n)*WN
-nk
£¨1£©
£¬³ÆÎªÐýתÒò×Ó»òµûÐÎÒò×Ó¡£
´ÓDFTµÄ¶¨Òå¿ÉÒÔ¿´³ö£¬ÔÚx(n)Ϊ¸´ÊýÐòÁеÄÇé¿öÏ£¬¶Ôij¸ökÖµ£¬Ö±½Ó°´£¨1£©Ê½¼ÆËãX(k) Ö»ÐèÒªN´Î¸´Êý³Ë·¨ºÍ£¨N-1£©´Î¸´Êý¼Ó·¨¡£Òò´Ë£¬¶ÔËùÓÐN¸ökÖµ£¬¹²ÐèÒªN´Î¸´Êý³Ë·¨ºÍN(N-1)´Î¸´Êý¼Ó·¨¡£¶ÔÓÚһЩÏ൱´óÓÐNÖµ£¨Èç1024µã£©À´Ëµ£¬Ö±½Ó¼ÆËãËüµÄDFTËùÐèÒªµÄ¼ÆËãÁ¿ÊǺܴóµÄ£¬Òò´ËDFTÔËËãµÄÓ¦ÓÃÊܵ½Á˺ܴóµÄÏÞÖÆ¡£
2
3.1.2¿ìËÙ¸µÀïÒ¶±ä»»FFT
ÐýתÒò×ÓWN ÓÐÈçϵÄÌØÐÔ¡£ ¶Ô³ÆÐÔ£ºWNÖÜÆÚÐÔ£ºWN
k+N/2
=-WNk £¨2£© =WNk(N-n)=WN-nk £¨3£©
n(N-k)
ÀûÓÃÕâÐ©ÌØÐÔ£¬¼È¿ÉÒÔʹDFTÖÐÓÐЩÏîºÏ²¢£¬¼õÉÙÁ˳˷¨»ýÏÓÖ¿ÉÒÔ½«³¤ÐòÁеÄDFT·Ö½â³É¼¸¸ö¶ÌÐòÁеÄDFT¡£FFT¾ÍÊÇÀûÓÃÁËÐýתÒò×ӵĶԳÆÐÔºÍÖÜÆÚÐÔÀ´¼õÉÙÔËËãÁ¿µÄ¡£
FFTµÄËã·¨Êǽ«³¤ÐòÁеÄDFT·Ö½â³É¶ÌÐòÁеÄDFT¡£ÀýÈ磺NΪżÊýʱ£¬ÏÈ
½«NµãµÄDFT·Ö½âΪÁ½¸öN/2µãµÄDFT£¬Ê¹¸´Êý³Ë·¨¼õÉÙÒ»°ë£ºÔÙ½«Ã¿¸öN/2µãµÄDFT·Ö½â³ÉN/4µãµÄDFT£¬Ê¹¸´Êý³ËÓÖ¼õÉÙÒ»°ë£¬¼ÌÐø½øÐзֽâ¿ÉÒÔ´ó´ó¼õÉÙ¼ÆËãÁ¿¡£×îС±ä»»µÄµãÊý³ÆÎª»ùÊý£¬¶ÔÓÚ»ùÊýΪ2µÄFFTËã·¨£¬ËüµÄ×îС±ä»»ÊÇ
2µãDFT¡£
Ò»°ã¶øÑÔ£¬FFTËã·¨·ÖΪ°´Ê±¼ä³éÈ¡µÄFFT£¨DIT FFT£©ºÍ°´ÆµÂʳéÈ¡µÄFFT
£¨DIF FFT£©Á½´óÀà¡£DIF FFTËã·¨ÊÇÔÚʱÓòÄÚ½«Ã¿Ò»¼¶ÊäÈëÐòÁÐÒÀ´Î°´Ææ£¯Å¼·Ö
³É2¸ö¶ÌÐòÁнøÐмÆËã¡£¶øDIF FFTËã·¨ÊÇÔÚÆµÓòÄÚ½«Ã¿Ò»¼¶ÊäÈëÐòÁÐÒÀ´ÎÆæ£¯Å¼·Ö³É2¸ö¶ÌÐòÁнøÐмÆËã¡£Á½ÕßµÄÇø±ðÊÇÐýתÒò×Ó³öÏÖµÄλÖò»Í¬£¬µÃËã·¨ÊÇÒ»ÑùµÄ¡£ÔÚDIF FFTËã·¨ÖУ¬ÐýתÒò×ÓWN³öÏÖÔÚÊäÈë¶Ë£¬¶øÔÚDIF FFTËã·¨ÖÐËü³ö
4
ÉÛÑôѧԺ¿Î³ÌÉè¼Æ
ÏÖÔÚÊäÈë¶Ë¡£
¼Ù¶¨ÐòÁÐx(n)µÄµãÊýNÊÇ2µÄÃÝ£¬°´ÕÕDIF FFTËã·¨¿É½«Æä·ÖΪżÐòÁÐºÍÆæÐòÁС£
żÐòÁУºx(2r)=x1(r) ÆæÐòÁУºx(2r+1)=x2(r)
ÆäÖУºr=0,1,2,¡,N/2-1£¬Ôòx(n)µÄDFT±íʾΪ
N?1N?1nkNN?1nkNX?k???x?n?Wn?0N/2?1??x?n?Wn?0??x?n?WNn?0nknΪżÊýN/2?1nÎªÆæÊý?2r?1?k
?
?r?0x?2r?WN2rk??r?0x?2r?1?WNN/2?1 N/2?1
?
x2?r?0N/2?1x1?r??W2N?rk?WkN?r?0?r??W2N?rkN/2?1??r?0x1?r?WkrkN/2?WkN?r?0x2rk?r?WN/2?X1?k??WNX2k+N/2
k
?k?r,k?0,1,...N/2?1ʽÖУ¬X1 (k)ºÍX2(k)·Ö±ðΪX1(r)ºÍX2(r)µÄN/2µÄDFT¡£ ÓÉÓÚ¶Ô³ÆÐÔ£¬WN
=-WNk¡£Òò´Ë£¬NµãDFT¿É·ÖΪÁ½²¿·Ö£º
k
ǰ°ë²¿·Ö£ºx(k)=x1(k)+WNx2(k) £¨4£© ºó°ë²¿·Ö£ºx(N/2+k)=x1(k)-WNx2(k) k=0,1,¡,N/2-1 £¨5£©
´Óʽ£¨4£©ºÍʽ£¨5£©¿ÉÒÔ¿´³ö£¬Ö»ÒªÇó³ö0~N/2-1Çø¼äx1(k)ºÍx2(k)µÄÖµ£¬¾Í¿ÉÇó³ö0~N-1Çø¼äx(k)µÄNµãÖµ¡£
ÒÔͬÑùµÄ·½Ê½½øÐгéÈ¡£¬¿ÉÒÔÇóµÃN/4µãµÄDFT£¬Öظ´³éÈ¡¹ý³Ì£¬¾Í¿ÉÒÔʹNµãµÄDFTÓÃÉÏ×é2µãµÄDFTÀ´¼ÆË㣬ÕâÑù¾Í¿ÉÒÔ´ó¼õÉÙÔËËãÁ¿¡£
»ù2 DIF FFTµÄµûÐÎÔËËãÈçͼ3.1Ëùʾ¡£ÉèµûÐÎÊäÈëΪx1(k)ºÍx2(k)£¬Êä³öΪ
x(k)ºÍx(N/2+K)£¬ÔòÓÐ
x(k)=x1(k)+WkNx2(k) £¨6£© x(N/2+k)=x1(k)-WkNx2(k) £¨7£©
ÔÚ»ùÊýΪ2µÄFFTÖУ¬ÉèN=2£¬¹²ÓÐM¼¶ÔËË㣬ÿ¼¶ÓÐN/2¸ö2µãFFT
5 M
ÉÛÑôѧԺ¿Î³ÌÉè¼Æ
µûÐÎÔËË㣬Òò´Ë£¬NµãFFT×ܹ²ÓÐMN/2¸öµûÐÎÔËËã¡£
AA£« BCBCA£ BCͼ3.1 »ù2 DIF FFTµÄµûÐÎÔËËã
ÀýÈ磺»ùÊýΪ2µÄFFT£¬µ±N=8ʱ£¬¹²ÐèÒª3¼¶£¬12¸ö»ù2 DIT FFTµÄµûÐÎÔËËã¡£ÆäÐźÅÁ÷³ÌÈçͼ3.2Ëùʾ¡£
x(0) x(0)
WN0
x(4) x(1) -1 WN0
x(2) x(2) -1 WN0 WN2
x(6) x(3) -1
-1
WN0
x(1) x(4) -1 WN0 WN1
x(5) x(5) -1 -1 WN0 WN2
x(3) x(6) -1 -1 WN0 WN2 WN3
x(7) x(7)
6
ÉÛÑôѧԺ¿Î³ÌÉè¼Æ
-1 -1 -1
ͼ3.2 8µã»ù2 DIF FFTµûÐÎÔËËã
´Óͼ(b)¿ÉÒÔ¿´³ö£¬ÊäÈëÊǾ¹ý±ÈÌØ·´×ªµÄµ¹Î»ÐòÁУ¬³ÆÎªÎ»Âëµ¹Öã¬ÆäÅÅÁÐ˳ÐòΪx(0),x(4),x(2),x(6),x(1),x(5),x(3),x(7)£¬Êä³öÊǰ´×ÔȻ˳ÐòÅÅÁУ¬Æä˳ÐòΪ
x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7).
4Èí¼þÉè¼Æ
4.1³ÌÐòÁ÷³Ìͼ
DSP³õʼ»¯ ´®¿ÚÉèÖà ADÉèÖà ÉèÖÃÐźÅÔ´ÀàÐÍ¡¢ÆµÂÊ·ùÖµ¡¢ºÍ²ÉÑùµãÊý ´®¿Ú½ÓÊÕ£¬AD²ÉÑù λÂëµ¹Öà 7 FFTÔËËã
¹²·ÖÏí92ƪÏà¹ØÎĵµ