云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 陈纪修教授《数学分析》九讲学习笔记与心得

陈纪修教授《数学分析》九讲学习笔记与心得

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 20:09:32

陈纪修教授《数学分析》九讲学习笔记与心得

云南分中心 ? 昆明学院 ? 周兴伟

此次听陈教授的课,收益颇多。陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。我们不妨来温习一下。

第一讲、微积分思想产生与发展的历史

法国著名的数学家H.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。陈教授就是以这一专题开讲的。

在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。

在这一讲中,陈教授脉络清晰,分析精当,这是我自叹不如的。讲《数学史》也有些年头,但仅满足于史料的堆砌,没有对一些精彩例子加以剖析。如陈教授对祖暅是如何用 “祖暅原理”求出球的体积的分析,这不仅对提高学生的学习兴趣是有益的(以疑激趣、以奇激趣),而且有利于提高学生的民族自豪感(陈教授也提到了这一点)。

在这一讲中,陈教授对weierstrass的“ε?N”、“ε?δ”语言的评述是“它实现了静态语言对动态极限过程的刻画”。这句话是非常精当的,如果意识不到这一点,你就很难理解这一点。在此我还想明确一点:《数学分析》的研究对象是函数,主要是研究其分析性质,即连续

性、可微性及可积性,而使用的工具就是极限。如果仔细盘点一下,在《数学分析》中,无论是数、函数、数列、函数列,数项级数,函数项级数等相关问题,无不用到这一语言,你应该能理解陈教授的“对于数学类学生来说,没有“ε?N”、“ε?δ”语言,在《数学分析》中几乎是寸步难行的”这一观点。

第二讲、实数系的基本定理

在这一讲中,陈教授从《实变函数》中对集合基数的讨论展开,对实数系的连续性作了有趣的讨论。首先是从绅士开party的礼帽问题,带我们走进了“无穷的世界”。

我在开《数学赏析》时有一个专题就是“无穷的世界”,我给学生讲礼帽问题、也讲希尔伯特无穷旅馆问题,但遗憾的是,当我剖析“若无穷旅馆住满了人,再来两个时,可将住1号房间的移往3号房间,住2号房间的移往4号房间,从而空出两个房间”时,学生对我“能移”表示怀疑。这一点我往往只能遗憾的说“跳不出有限的圈子,用有限的眼光来看无限,只能是‘只在此山中,云深不知处’”。当然,我还是会进一步考虑如何来讲好这一讲。若陈教授或其他老师有好的建议,能指点一下,则不胜感激。

对于集合[0,1]与(0,1)的对等关系,包括Q与R的对等关系,或者说他们之间双射的构造。关键在于“求同存异”,找一个可数集来“填补”他们之间的差距,这相当于希尔伯特无穷旅馆问题中来了两个人和来了可数个人。

对于实数集中的有理数,“廖若晨星”是非常形象的描述。一声集合的哨响,我们发现,有理数在实数轴上几乎是没有位置的(mQ=0),用一系列的帽子来盖住这些点,而这些帽子

的大小是ε,这是非常精彩的结果。

从可数集到不可数集,再加上无最大基数定理,让我们看到了“无穷的层次性”,由此我们不难理解“人外有人,天外有天,无穷之外有无穷”。我们不能不发出“哀吾生之须臾,羡长江之无穷”的感慨。

陈教授对单调确界原理的证明非常清晰明了,几何直观的描述形象直观。

第三讲 《数学分析》课程中最重要的两个常数

法国著名雕塑家罗丹曾经说过“生活中从不缺少美,而是缺少发现美的眼睛”。我想说:“数学中并不缺少美,缺少的是揭示数学美的老师”。陈教授是一个出色的老师,他不仅发现了数学的美,而且为我们展示了数学的美。

著名的欧拉公式:e?i?1?0,实现了有理数、无理数、超越数、实数、虚数完美统一,获得“最美的数学定理”称号。欧拉建立了在他那个时代,数学中最重要的几个常数(0,1,i,e,?)之间的绝妙的有趣的联系,被认为是数学奇异美的典例。

在本讲中,陈教授以李大潜院士访问法国“引入”的一个有趣例子开讲,让我们体会了数学中的美,这个不等式还有许多有意思的地方,无论是不等式的形式,还是他的证明,都非常深刻地体现了数学的美。Pi是无理数的证明,吸引了与会学员的眼球,赞叹之余,有学员问这一证法的出处,我也还真想知道,请陈教授不吝指教。

本讲最后将函数sinx/x展成无穷乘积形式,并妙用此形式求出p级数中p为偶数值时的和,对我而言是耳目一新的。在我记忆中好像菲尔金哥尔茨的《微积分学教程》(第二卷)中也有求

出的方法,而p为奇数的情形好像至今尚未解决。对p=2的情形,欧拉至少用两种方法得到结果,其中一种方法妙用了L’Hospital法则(《数学译林》09.3)。

第四讲 级数与反常积分收敛的A.D判别法

恰逢这个学期讲《数学分析》(3),在讲授含参变量反常积分时,先复习了反常积分,再复习了函数项级数,并将几个判别法列表比较,尤其是A.D判别法,能与陈教授不谋而合,真是倍感荣幸。

陈教授对Abel引理的直观刻画,也是深得学员好评。我对陈教授从Abel引理分析?anbn收敛条件的分析而得到Dilichlet判别法和Abel判别法的相关条件深感佩服,尤其是分析得丝丝入扣。

第五讲 函数项级数与含参变量反常积分的一致收敛

一致收敛性无疑是《数学分析》中的一个重要概念。陈教授对“点点收敛”与“一致收敛”的剖析是非常到位的,学生在学习时如果是只能注意到在定义的陈述“?x”的位置不相同,而不明其所以时,这样的教学肯定是失败的。陈教授例子选择精当,语言使用精辟,问题分析精准。

请注意陈教授的这句话:“毛病出在点态收敛的情况下,在某些点附近,N无法控制”(类似的话在第九讲中说过)。

第六讲 Weierstrass函数:处处连续处处不可导的函数

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

陈纪修教授《数学分析》九讲学习笔记与心得 云南分中心 ? 昆明学院 ? 周兴伟 此次听陈教授的课,收益颇多。陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。我们不妨来温习一下。 第一讲、微积分思想产生与发展的历史 法国著名的数学家H.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。陈教授就是以这一专题开讲的。 在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。 在这一讲中,陈

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com