当前位置:首页 > (优辅资源)陕西省咸阳市高二上学期期末考试数学(文)试题Word版含答案
优质文档
切线方程;
(2)若不等式2f?x??g??x??2恒成立,求实数a的取值范围.
试卷答案
一、选择题
1-5: DBBCB 6-10:BDCAA 11、12:BD
二、填空题
51 14. 15. ???,?1?2313. ?3,??? 16. 6 三、解答题
17.解:(1)∵圆心M到点?0,1?与到直线y??1的距离始终保持相等,
∴圆心M的轨迹为抛物线,且p?1,解得p?2, 2∴圆心M的轨迹方程为x?4y;
优质文档
2优质文档
?y?kx?22(2)联立?2消去y并整理,得x?4kx?8?0,
?x?4y设A?x1,y1?、B?x2,y2?,则x1?x2?4k,x1x2?8,
AB?1?k2?x1?x2?2?4x1x2?1?k23.
?4k?2?32?8,
解得k??3,结合已知得k?223318.解:(1)设数列?an?的公比为q,则a3?a1q?2q,a4?a1q?2q,
32∵a1,a3?1,a4成等差数列,∴a1?a4?2?a3?1?,即2?2q?22q?1,
??整理得q2?q?2??0,
n?1∵q?0,∴q?2,∴an?22?2n?n?N*?;
n(2)∵bn?log2an?log22?n,
∴Sn?b1?b2??bn?1?2??n?n?n?1?, 2∴数列?bn?的前n项和Sn?n?n?1?. 21c?acosC, 219.解:(1)在?ABC中,∵b?由正弦定理,得sinB?1sinC?sinAcosC, 2又∵sinB?sin?A?C?,
∴sin?A?C??优质文档
11sinC?sinAcosC,即cosAsinC?sinC, 22优质文档
又∵sinC?0,∴cosA?1, 20又∵0?A??,∴A?60;
(2)由余弦定理,得a?b?c?2bccosA?b?c?bc??b?c??3bc,
222222∵4?b?c??3bc,a?23,
∴?b?c??4?b?c??12,解得b?c?6,代入上式,得bc?8,
2113S?bcsinA??8??23. ?ABC∴的面积22220.解:(1)f??x??3x?12?3?x?2??x?2?,
2令f??x??3x?12?3?x?2??x?2??0,解得x?2或x??2,
2x,f??x?,f?x?的变化如下表:
x ???,?2? + -2 ??2,2? - 2 ?2,??? + f??x? f?x? 0 0 单调递增 16 单调递减 -16 单调递增 ∴函数f?x?的极大值为f??2??16,极小值为f?2???16; (2)由(1)知f??2??16,f?2???16,又f??3??9,f?3???9,
∴当x???3,3?时,函数f?x?的最大值为f??2??16,最小值为f?2???16. 21.解:(1)∵F??1,0?为椭圆M的焦点,∴c?1,
优质文档
优质文档
又b?3,∴a?2,
x2y2??1; ∴椭圆M的方程为43(2)依题意,知k?0,设直线方程为y?k?x?1?,
和椭圆方程联立消掉y,得3?4k?2?x2?8k2x?4k2?12?0,
8k24k2?12,x1x2?计算知??0,∴方程有两实根,且x1?x2??,
3?4k23?4k2此时
12k1S1?S2?4y1?y2?2y1?y2?2k?x1?1??k?x2?1??2k?x2?x1??2k?23?4k2.
222.解:(1)g??x??3x?2ax?1,由题意,知3x?2ax?1?0的解集是??,1?,
2?1??3?2即方程3x?2ax?1?0的两根分别是?,1.
13将x?1或?12代入方程3x?2ax?1?0,得a??1, 322∴g?x??x?x?x?2,g??x??3x?2x?1,∴g???1??4,
3∴g?x?的图像在点P??1,1?处的切线斜率k?g???1??4,
0;∴函数y?g?x?的图像在点P??1,1?处的切线方程为:y?1?4?x?1?,即4x?y?5?
(2)∵2f?x??g??x??2恒成立,
优质文档
共分享92篇相关文档