当前位置:首页 > 线性代数答案第三,四章 课后答案
?0??0?????得基础解系?2??1?取P2??12?.
?1??12?????当?3?1时,解方程(A?E)x?0,由
?1?A?E??0?0?0220??2?2??~?1??0?0?0100??1? 0??0?0???????得基础解系?3???1?取P3???12?,于是正交变换为
?1??12??????x1??1????x2???0?x??0?3??(2)
011二
22??y1????222?12??y2? 且有f?2y1?5y2?y3.
??12???y3?次
型
矩
阵
为
0?1??1A??0????111?100?111?1??0?1???1?21??A??E?10?111???100?11??1?1011???(??1)(??3)(??1),故A的特征值为?1??1,?2?3,?3??4?1
?1????2???1??2?当?1??1时,可得单位特征向量P1?,
?1?????2?1???2?
?1????2??1??2?当?2?3时,可得单位特征向量P2?,
?1?????2?1????2????当?3??4?1时,可得单位特征向量P3??????1??0???1?2???0?2?.于是正交变换为
,P4??1??0??1?2????0?2???1??2?x1?????1?x2??2?x???1?3????x??2?4??1??2??1???????12121212120120???0??1???2????0?????1??2?y1??y2?2222且有f??y1?3y2?y3?y4. y3??y4??13.证明 A为实对称矩阵,则有一正交矩阵T,使得
TAT?1?2??????B成立. ??n??其中?1,?2,?,?n为A的特征值,不妨设?1最大,
T为正交矩阵,则T则f?xT?1?TT且T?1,故A?TT?1TTB?TB
TAx?xTTTBTx?yBy??1y1??2y2????nyn.
222其中y?Tx
当y?Tx?Tx?x?1时,
即
y1?y2???yn?1即y1?y2???yn?1
22222222f最大?(?1y1????nyn)最大??2?14. 解 (1) A??1?1?1?60y1?1??1.故得证.
1??0?, ?4???21?6010?4 ??38?0故f为负定.
a11??2?0,
?211?6?11?0,11?1???1(2) A??2???11?12?1302?130?3209?61???3?1,a11?1?0,?6??1??19??13?4?0,
0?6?0,A?24?0.故f为正定. 9?a11?15.证明 设U????a?n1a12?an2???T??a1n??????(a1,a2,?,an),x???ann????x1??x1?, ???xn??f?xTAx?xTUTUx?(Ux)(Ux)
?(a11x1???a1nxn,a21x1???a2nxn,?,an1x1???annxn) ?a11x1???a1nxn??a21x1???a2nxn?????ax???axnnn?n11???22?(ax???ax)?(ax???ax) 1111nn2112nn????2???(an1x1???annxn)?0.
?a11x1???a1nxn?0?若“?0”成立,则?成立. ??ax???ax?0nnn?n11???即对任意x?????x1??x1?使?1x1??2x2????nxn?0成立. ???xn??则?1,?2,?,?n线性相关,U的秩小于n,则U不可逆,与题意产生矛盾.于是f?0成立.故f?xAx为正定二次型.
16.证明 A正定,则矩阵A满秩,且其特征值全为正. 不妨设?1,?,?n为其特征值,?i?0由定理8知,存在一正交矩阵P
Ti?1,?,n
??1??T使PAP????????????????2????? ??n???1?2??????????????n????1?1?2????? ??n??又因P为正交矩阵,则P可逆,P所以A?PQQPTTT?PT.
T?PQ?(PQ).
T令(PQ)?U,U可逆,则A?U
U.
共分享92篇相关文档