云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 1.1分类加法计数原理和分步乘法计数原理

1.1分类加法计数原理和分步乘法计数原理

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 14:56:12

第三课时

3 综合应用

例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.

①从书架上任取1本书,有多少种不同的取法?

②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 【分析】

①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.

②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.

③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这

件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.

解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是

N?m1?m2?m3=4+3+2=9; ( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是

N?m1?m2?m3=4×3×2=24 . (3)N?4?3?4?2?3?2?26。

例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?

解:从 3 幅画中选出 2 幅分别挂在左、右两边墙上,可以分两个步骤完成:第 1 步,从 3 幅画中选 1 幅挂在左边墙上,有 3 种选法;第 2 步,从剩下的 2 幅画中选 1 幅挂在右边墙上,有 2 种选法.根据分步乘法计数原理,不同挂法的种数是

N=3×2=6 .

6 种挂法可以表示如下:

分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.

例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母

和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?

分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.

解:将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:

第1步,从26个字母中选1个,放在首位,有26种选法;

第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法; 第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法; 第4步,从10个数字中选1个,放在第 4 位,有10种选法; 第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法; 第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法. 根据分步乘法计数原理,字母组合在左的牌照共有 26 ×25×24×10×9×8=11 232 000(个) . 同理,字母组合在右的牌照也有11232 000 个. 所以,共能给

11232 000 + 11232 000 = 22464 000(个) . 辆汽车上牌照.

用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析 ― 需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整” ― 完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.

练习

(a1?a2?a3)(b1?b2?b3)(c1?c2?c3?c4?c5)展开后共有多少项? 1.乘积

2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后

四位数字都是。到 9 之间的一个数字,那么这个电话局不同的电话号码最多有多少个?

3.从 5 名同学中选出正、副组长各 1 名,有多少种不同的选法?

4.某商场有 6 个门,如果某人从其中的任意一个门进人商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?

第四课时

例1.给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G 或 U~Z , 后两个要求用数字1~9.问最多可以给多少个程序命名?

分析:要给一个程序模块命名,可以分三个步骤:第 1 步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符又可以分为两类.

解:先计算首字符的选法.由分类加法计数原理,首字符共有 7 + 6 = 13 种选法.

再计算可能的不同程序名称.由分步乘法计数原理,最多可以有 13×9×9 = = 1053

个不同的名称,即最多可以给1053个程序命名.

例2. 核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个 RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据. 总共有 4 种不同的碱基,分别用A,C,G,U表示.在一个 RNA 分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类 RNA 分子由 100 个碱基组成,那么能有多少种不同的 RNA 分子?

分析:用图1. 1一2 来表示由100个碱基组成的长链,这时我们共有100个位置,每个位置都可以从A , C , G , U 中任选一个来占据.

解:100个碱基组成的长链共有 100个位置,如图1 . 1一2所示.从左到右依次在每一个位置中,从 A , C , G , U 中任选一个填人,每个位置有 4 种填充方法.根据分步乘法计数原理,长度为 100 的所有可能的不同 RNA 分子数目有

100(个) 4?4?L?4?414243100例3.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易

控制的两种状态.因此计算机内部就采用了每一位只有 O 或 1 两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由 8 个二进制位构成.问:

(1)一个字节( 8 位)最多可以表示多少个不同的字符?

(2)计算机汉字国标码(GB 码)包含了6 763 个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?

分析:由于每个字节有 8 个二进制位,每一位上的值都有 0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.

解:(1)用图1.1一3 来表示一个字节.

图 1 . 1 一 3

一个字节共有 8 位,每位上有 2 种选择.根据分步乘法计数原理,一个字节最多可以

8

表示 2×2×2×2×2×2×2×2= 2 =256 个不同的字符;

( 2)由( 1 )知,用一个字节所能表示的不同字符不够 6 763 个,我们就考虑用2 个字节能够表示多少个字符.前一个字节有 256 种不同的表示方法,后一个字节也有 256 种表示方法.根据分步乘法计数原理,2个字节可以表示 256×256 = 65536 个不同的字符,这已经大于汉字国标码包含的汉字个数 6 763.所以要表示这些汉字,每个汉字至少要用 2 个字节表示.

例4.计算机编程人员在编写好程序以后需要对程序进行测试.程序员需要知道到底有多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成.如图1.1一4,它是一个具有许多执行路径的程序模块.问:这个程序模块有多少条执行路径?

另外,为了减少测试时间,程序员需要设法减少测试次数你能帮助程序员设计一个测试方法,以减少测试次数吗?

图1.1一4

分析:整个模块的任意一条执行路径都分两步完成:第 1 步是从开始执行到 A 点;第 2 步是从 A 点执行到结束.而第 1 步可由子模块 1 或子模块 2 或子模块 3 来完成;第 2 步可由子模块 4 或子模块 5 来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.

解:由分类加法计数原理,子模块 1 或子模块 2 或子模块 3 中的子路径共有 18 + 45 + 28 = 91 (条) ;

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第三课时 3 综合应用 例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书. ①从书架上任取1本书,有多少种不同的取法? ②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 【分析】 ①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理. ②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理. ③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com