当前位置:首页 > 数学压轴题精选精练(共57页)
?2?由??y??x (x?0)?x?23 ?3236?2解得? ∴点E的坐标为(?x2?4y2?4???y??63, ?3), 3∴OE?2ON.
综上, OE?2ON的充要条件是|AB| ?3.………………(12分)
4.(本小题满分14分)已知函数f(x)?14x?2(x?R).
(1) 试证函数f(x)的图象关于点(112, 4)对称;
(2) 若数列{ann}的通项公式为an?f(m) (m?N?, n?1, 2, ?,m), 求数列{an}的前m项和
Sm;
(3) 设数列{b13, b2设T1n}满足: bn?1?bn?bn. n?b?1?1b???11??1. 12?1bn若(2)中的Sn满足对任意不小于2的正整数n, Sn?Tn恒成立, 试求m的最大值.
解: (1)设点P10(x0, y0)是函数f(x)的图象上任意一点, 其关于点(, 124)的对称点为P(x, y).
?x?x0?1?x?1?x0由???22 得?,?y?y?0?2?1y?1 ??4?2?y0.所以, 点P的坐标为P(1?x10, 2?y0).………………(2分) 由点P10(x0, y0)在函数f(x)的图象上, 得y0?4x0?2.
∵f(1?x14x04x00)?41?x0?2?4?2?4x0?2(4x?2),0 12?y114x010?2?4x0?2?2(4x0?2), ∴点P(1?x0, 2?y0)在函数f(x)的图象上.
5
141kk1(2)由(1)可知, f(x)?f(1?x)?, 所以f()?f(1?)? (1?k?m?1),
2mm2km?k11即f()?f()? , ?ak?am?k?,………………(6分)
mm22∴函数f(x)的图象关于点(, )对称. ………………(4分) 由Sm?a1?a2?a3???am?1?am, ……………… ① 得Sm?am?1?am?2?am?3???a1?am, ………………② 由①+②, 得2Sm?(m?1)?∴Sm?121m?11m1?2am??2???, 226261(3m?1).………………(8分) 1212(3) ∵b1?,bn?1?bn?bn?bn(bn?1), ………………③
3∴对任意的n?N?, bn?0. ………………④ 由③、④, 得
1bn?1?111111??,即??.
bn(bn?1)bnbn?1bn?1bnbn?1∴Tn?(111111111.……………(10分) ?)?(?)???(?)???3?b1b2b2b3bnbn?1b1bn?1bn?12∵bn?1?bn?bn?0, ?bn?1?bn,∴数列{bn}是单调递增数列. ∴Tn关于n递增. 当n?2, 且n?N?时, Tn?T2. ∵b1?11144452,b2?(?1)?, b3?(?1)?, 33399981175?.………………(12分) b152∴Tn?T2?3?∴Sm?
751752384,即(3m?1)?,∴m??6, ∴m的最大值为6. ……………(14分) 52125239395.(12分)E、F是椭圆x?2y?4的左、右焦点,l是椭圆的右准线,点P?l,过点E的直线交椭圆于A、B两点.
(1) 当AE?AF时,求?AEF的面积; (2) 当AB?3时,求AF?BF的大小;
BEOFy22APMx 6
(3) 求?EPF的最大值. 解:(1)??m?n?4?m2?n2?8?S?AEF?12mn?2 (2)因???AE?AF?4?BF?4?AB?AF?BF?8, ?BE?则AF?BF?5.
(1) 设P(22,t)(t?0) tan?EPF?tan(?EPM??FPM)
?(32t?2t)?(1?32?222t223t2)?t2?6?t?6t?1?3, 当t?6时,tan?EPF?3??EPF?30?3
6.(14分)已知数列?a?12S2nn?中,a13,当n?2时,其前n项和Sn满足an?2S,n?1(2) 求Sann的表达式及limS2的值;
n??n(3) 求数列?an?的通项公式; (4) 设bn?1n?N且n?2时,(2n?1)3?1(2n?1)3,求证:当an?bn.
解:(1)a2S2nn?Sn?Sn?1?2S?S11n?1?Sn?2SnSn?1???2(n?2) n?1SnSn?1所以??1??S?是等差数列.则S1n?.
n?2n?1limann??S2?lim22nn??2S???2.
n?12limn??Sn?1(2)当n?2时,an?Sn?Sn?1?12n?1?12n?1??24n2?1,
7
?综上,a?1??n?1??3n?2.
???1?4n2?n?2?(3)令a?112n?1,b?2n?1,当n?2时,有0?b?a?13 (1) 法1:等价于求证
1112n?1???1?2n?1?32n?1??3.
2n?1当n?2时,0?12n?1?13,令f?x??x2?x3,0?x?13, f??x??2x?3x2?2x(1?32x)?2x(1?3132?3)?2x(1?2)?0, 则f?x?在(0,13]递增. 又0?12n?1?112n?1?3, 所以g(132n?1)?g(132n?1),即an?bn.
法(2)a1n?bn?2n?1?12n?1?(1(2n?1)3?1(2n?1)3)?b2?a2?(b3?a3) ?(a?b)(a2?b2?ab?a?b) (2)
?(a?b)[(a2?ab2?a)?(b2?abba2?b)] ?(a?b)[a(a?2?1)?b(b?2?1)] (3) 因b?ab3a2?1?a?2?1?2?1?323?1?32?1?0,所以a(a?ba2?1)?b(b?2?1)?0由(1)(3)(4)知an?bn.
法3:令g?b??a2?b2?ab?a?b,则g??b??2b?a?1?0?b?1?a2 所以g?b??max?g?0?,g?a???max?a2?a,3a2?2a?
因0?a?13,则a2?a?a?a?1??0,3a2?2a?3a(a?213)?3a(3?49)?0 所以g?b??a2?b2?ab?a?b?0 (5) 由(1)(2)(5)知an?bn
8
共分享92篇相关文档