当前位置:首页 > 《数与式》-辽宁省东港市2020年中考数学一轮复习专题测试
五、(本题12分)
24.(1) 有理数a,b,C在数轴上的位置如图,
化简:a?c?b?c?a?b;
(2) 两个非零有理数a,b满足a?b=2a-3b,求
a?4b3a?2b?的值. ab
六、(本题14分)
25.如图,已知数轴上有A,B,C三个点,它们表示的数分别是?24,?10,10.
(1)填空: AB = ,BC = .
(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC?AB的值是否随着时间t的变化而改变? 请说明理由。
(3)现有动点P,Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动:当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,请试
用含t的式了表示P,Q两点间的距离(不必写过程,直接写出结果).
答案第10页,总16页
数与式参考答案
1.B 2.A 3.D 4.A 5.C 6.B 7.C 8.D 9.C 10.A 11.13 12.1 13.?24 14.1
3315.或.
54解:由题意,可知当
1<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,2所以第二次操作时正方形的边长为1-a,第二次操作以后剩下的矩形的两边分别为1-a,2a-1. 故答案为1-a;
此时,分两种情况:
2①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.
3∵经过第三次操作后所得的矩形是正方形, ∴矩形的宽等于1-a,
3即2a-1=(1-a)-(2a-1),解得a=;
5②如果1-a<2a-1,即a>
2,那么第三次操作时正方形的边长为1-a. 3则1-a=(2a-1)-(1-a),解得a=
3. 433综上所述:a的值是或.
5416.192019 解:连接BC1, ∵C1A=2CA, ∴S△ABC1=2S△ABC,
同理:S△ABC=2S△ABC1=4S△ABC,
111∴S△A1AC1=6S△ABC,
同理:S△A1BB1=S△CB1C1=6S△ABC, ∴S△ABC=19S△ABC,
111即S1=19S△ABC, ∵S△ABC=1, ∴S1=19;
同理:S2=19S1=192S△ABC,S3=193S△ABC, ∴S2019=192019S△ABC=192019. 故答案是:192019.
答案第12页,总16页
共分享92篇相关文档