当前位置:首页 > 第2讲初一相交线与平行线动点提高题压轴题
标准实用
解:(1)∵入射角与反射角相等,即∠1=∠5,∠7=∠6, 又∵∠1=38°, ∴∠5=38°,
∴∠4=180°﹣∠1﹣∠5=104°, ∵m∥n,
∴∠2=180°﹣∠4=76°,
∴∠6=(180°﹣76°)÷2=52°, ∴∠3=180°﹣∠6﹣∠5=90°;
(2)由(1)可得当∠1=55°和∠1=40°时, ∠3的度数都是90°; (3)∵∠3=90°, ∴∠6+∠5=90°,
又由题意知∠1=∠5,∠7=∠6,
∴∠2+∠4=180°﹣(∠7+∠6)+180°﹣(∠1+∠5), =360°﹣2∠5﹣2∠6, =360°﹣2(∠5+∠6), =180°.
由同旁内角互补,两直线平行, 可知:m∥n.
故答案为:76°,90°90°,90°90°.
5.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3. (1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系. 证明:(1)过P作PQ∥l1∥l2,
由两直线平行,内错角相等,可得: ∠1=∠QPE、∠2=∠QPF; ∵∠3=∠QPE+∠QPF, ∴∠3=∠1+∠2.
(2)关系:∠3=∠2﹣∠1; 过P作直线PQ∥l1∥l2,
则:∠1=∠QPE、∠2=∠QPF; ∵∠3=∠QPF﹣∠QPE, ∴∠3=∠2﹣∠1.
(3)关系:∠3=360°﹣∠1﹣∠2. 过P作PQ∥l1∥l2;
同(1)可证得:∠3=∠CEP+∠DFP; ∵∠CEP+∠1=180°,∠DFP+∠2=180°, ∴∠CEP+∠DFP+∠1+∠2=360°,
文案大全
标准实用
即∠3=360°﹣∠1﹣∠2.
6.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;
(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;
(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解. 解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°, ∵OE平分∠COF, ∴∠COE=∠EOF, ∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°; (2)∵CB∥OA, ∴∠AOB=∠OBC, ∵∠FOB=∠AOB, ∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC, ∴∠OBC:∠OFC=1:2,是定值; (3)在△COE和△AOB中, ∵∠OEC=∠OBA,∠C=∠OAB, ∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线, ∴∠COE=∠AOC=×80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°, 故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
文案大全
标准实用
7.平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.
(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.
(2)如图3,写出∠BPD﹑∠B﹑∠D﹑∠BQD之间的数量关系?(不需证明). (3)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
解:(1)过点P作PE∥AB,
∵AB∥CD, ∴AB∥EP∥CD,
∴∠B=∠1=50°,∠D=∠2=30°, ∴∠BPD=80°;
(2)∠B=∠BPD+∠D.
理由如下:设BP与CD相交于点O,
∵AB∥CD, ∴∠BOD=∠B,
在△POD中,∠BOD=∠BPD+∠D, ∴∠B=∠BPD+∠D.
(3)如图,连接QP并延长, 结论:∠BPD=∠BQD+∠B+∠D.
(4)如图,由三角形的外角性质,∠A+∠E=∠1,∠B+∠F=∠2, ∵∠1+∠2+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
8.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
文案大全
标准实用
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;
(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°. 解:(1)如图1,∵∠1与∠2互补, ∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD;
(2)如图2,由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下: 如图3,∵∠1=∠2, ∴∠3=2∠2. 又∵GH⊥EG,
∴∠4=90°﹣∠3=90°﹣2∠2. ∴∠EPK=180°﹣∠4=90°+2∠2. ∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK﹣∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
文案大全
标准实用
11.画图并填空:
如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格. (1)请在图中画出平移后的△A′B′C′;
(2)在图中画出△的A′B′C′的高C′D′(标出点D′的位置);
(3)如果每个小正方形边长为1,则△A′B′C′的面积= .(答案直接填在题中横线上)
文案大全
共分享92篇相关文档