当前位置:首页 > (完整word版)2016年全国高考理科数学试题及答案,推荐文档
(14)α、β是两个平面,m、n是两条直线,有下列四个命题:
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β. (2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,m
α,那么m∥β.
(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有 。(填写所有正确命题的编号)
(15)有三张卡片,分别写有1和2,1和3,2和3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 。
(16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= 。
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本题满分12分)
Sn为等差数列
S7=28 记的前n项和,且a1=1 ,
,其中
表示不超过x的最大整数,如[0.9] = 0,
[lg99]=1。
(I)求b1,b11,b101;
(II)求数列
(18)(本题满分12分)
的前1 000项和.
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 5 概率 0.30 0.15 0.20 0.20 0.10 0. 05 (I)求一续保人本年度的保费高于基本保费的概率;
(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (III)求续保人本年度的平均保费与基本保费的比值. (19)(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,
AE=CF=△
EF交BD于点H.将△DEF沿EF折到
的位置,
,
共分享92篇相关文档